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1 Executive Summary

1.1 Overview and Main Results

This report describes work performed from 25 July 2010 to 19 October 2013 under AFRL grant number
FA8750-11-1-0015 entitled “Studies on Optimized Assured Cooperative Communications”. We cover two
important tasks: (1) determine optimal transmission power sequence for cooperative hybrid automatic-repeat-
request (H-ARQ) relaying protocol in wireless networks; and (2) design and optimize cooperative commu-
nication protocols by exploring all possible variations in time and power domains. Some main results are
summarized in the following:

• We first addressed the fundamental problem of assigning optimal transmission power sequence for co-
operative hybrid automatic-repeat-request (H-ARQ) relaying protocol over quasi-static Rayleigh fading
channels. A closed-form expression of the average total transmission power was obtained first for the
cooperative H-ARQ relaying protocol, in which the source may use different transmission power level in
different (re)transmission rounds. We determined the optimal power sequence by minimizing the average
total transmission power. However, the closed-form expression of the average total power consumption
of the cooperative H-ARQ protocol is complicated in general, so we developed a simple approximation of
the average total transmission power that is tight at high SNR. Based on the asymptotically tight approx-
imation, we were able to identify the sequence of power values that minimizes the average total power
consumption of the cooperative H-ARQ protocol for any given targeted outage probability. In particular,
we derived a set of equations that describe the optimal power level in each (re)transmission and enable its
recursive calculation with fixed searching complexity. When the maximum number of (re)transmissions
allowed in the protocol is L = 2, we have a closed-form result for the optimal transmission power se-
quence. The optimal power assignment solution reveals that conventional equal power assignment is
not optimal in general. For example, for targeted outage probability of 10−4 with a maximum of two
(re)transmissions, the average total transmission power with the optimal power assignment is 3 dB lower
than the equal power assignment. The difference in average total power cost grows further when the num-
ber of allowable (re)transmissions increases (for example, 6 dB gain with a cap of 4 (re)transmissions) or
the targeted outage probability decreases (11 dB gain with outage probability 10−5 and (re)transmission
capped at 4).

• Cooperative communication has emerged as a new wireless network communication concept, in which
parameter optimization such as power budget and time allocation plays an important role in cooperative
relaying protocol designs. While most existing works on cooperative relaying protocol designs consid-
ered equal-time allocation scenario, i.e. equal time duration is assigned to each source and each relay, in
this project we designed and optimized cooperative communication protocols by exploring all possible
variations in time and power domains. First, we considered an ideal cooperative relaying protocol where
the system can use arbitrary re-encoding methods at the relay and adjust time allocation arbitrarily. We
obtained an optimum strategy of power and time allocations to minimize the outage probability of the
ideal cooperative protocol. Specifically, for any given time allocation, we were able to determine the
corresponding optimum power allocation analytically with a closed-form expression. We also showed
that in order to minimize the outage probability of the protocol, one should always allocate more energy
and time to the source than the relay. Second, with more realistic consideration, we designed a practi-
cal cooperative relaying protocol based on linear mapping, i.e. using linear mapping as the re-encoding
method at the relay and considering integer time slots in the two phases. The theoretical results from
the ideal cooperative protocol served as guideline and benchmark in the practical cooperative protocol
design. We also developed an optimum linear mapping to minimize the outage probability of the linear-
mapping based cooperative protocol. Extensive numerical and simulation studies illustrate our theoretical
developments and show that the performance of the proposed cooperative relaying protocol based on the
optimum linear mapping is close to the performance benchmark of the ideal cooperative protocol.
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The introduction to the project and an overview of each research task is given in Section 2. Then in Section
3 we present specifically models, assumptions, methods, and main results for each task. Section 4 contains the
conclusions and bibliography is included at the end.

1.2 List of People Involved

There are four faculty members involved in the project, which are listed in the following:

• Prof. Weifeng Su; University at Buffalo, State University of New York (SUNY); PI

• Prof. Stella Batalama; University at Buffalo, State University of New York (SUNY); Collaborator

• Prof. Dimitris Pados; University at Buffalo, State University of New York (SUNY); Collaborator

• Prof. Tommaso Melodia; University at Buffalo, State University of New York (SUNY); Collaborator

Additionally, the project supported two Ph.D students, working in the project toward their Ph.D degrees.

1.3 List of Publications

The project has resulted in the following peer-reviewed journal articles and conference proceeding papers.

• S. Lee, W. Su, D. A. Pados, and J. D. Matyjas, ”The optimal power assignment for cooperative hybrid-
ARQ relaying protocol,” in Proceedings of IEEE Global Telecommunications Conference (GLOBE-
COM), pp.1-6, Houston, TX, Dec. 5-9, 2011.

• W. Su, S. Lee, D. A. Pados, and J. D. Matyjas, ”Optimal power assignment for minimizing the average
total transmission power in hybrid-ARQ Rayleigh fading links,” IEEE Transactions on Communications,
vol. 59, no. 7, pp.1867-1877, July 2011.

• W. Su, J. D. Matyjas, and S. N. Batalama, ”Active cooperation between primary users and cognitive
radio users in heterogeneous ad-hoc networks,” IEEE Transactions on Signal Processing, vol. 60, no. 4,
pp.1796-1805, April 2012.

• S. Lee, W. Su, D. A. Pados, and J. D. Matyjas, ”Optimal power assignment to minimize the average delay
in hybrid-ARQ protocols,” in Proceedings of IEEE International Conference on Communications (ICC),
Ottawa, Canada, June 10-15, 2012.

• W. Su, J. D. Matyjas, M. J. Gans, and S. N. Batalama, ”On the capacity of airborne MIMO communica-
tions,” in Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), Anaheim, CA,
December 3-7, 2012.

• W. Su, J. D. Matyjas, M. J. Gans, and S. N. Batalama, ”Maximum achievable capacity in airborne MIMO
communications with arbitrary alignments of linear transceiver antenna arrays,” IEEE Transactions on
Wireless Communications, vol. 12, no. 11, pp.5584-5593, November 2013.

• Z. Mo, W. Su, S. N. Batalama, and J. D. Matyjas, ”Cooperative communication protocol designs based
on optimum power and time allocation,” submitted to IEEE Transactions on Wireless Communications,
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relaying protocol,” submitting to IEEE International Conference on Communications (ICC’14), 2013.
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col design with optimum power and time allocation,” submitting to IEEE International Conference on
Communications (ICC’14), 2013.
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2 Introduction to the Project

2.1 Overview of Cooperative ARQ Relaying Protocols in Wireless Networks

Cooperative wireless networks can substantially increase network reliability as each user’s information may
be jointly delivered to its destination with the assistance of cooperative users/nodes in the networks [1]–[8].
On the other hand, automatic-repeat-request (ARQ) protocols have been long-time used to enable reliable data
packet transmissions in data link control [9]–[12], in which a receiver requests retransmission when a packet
is not correctly received. In basic ARQ protocols, a receiver decodes an information packet based only on
the received signal in each (re)transmission round [9, 10], while in more advanced ARQ protocols, a receiver
may decode an information packet by combining received signals from all previous (re)transmission rounds,
resulting in so-called hybrid ARQ (H-ARQ) protocols [11, 12].

It is a natural idea to exploit H-ARQ protocols in conjunction with the cooperative communication concept to
jointly enhance link connectivity and network reliability. When a source sends a wireless signal to an intended
destination, nearby users may also receive the signal. Thus, if the destination requests retransmission, the nearby
users may also assist forwarding the signal alongside the source’s retransmission. The destination can combine
all received signals from source and relays and jointly decode the signals to improve detection performance.
Some recent works have studied H-ARQ protocols in the context of cooperative relay networks [13]–[16]. In
particular, [13] was among the first such studies to present a general framework of cooperative ARQ relay net-
works. It was shown that cooperative ARQ relay networks have great advantages in terms of throughput, delay,
and energy consumption compared to conventional multihop ARQ networks in which point-to-point ARQ links
are concatenated to form network routes. In [14, 15], information-theoretic analysis was developed and upper
bounds for the diversity order of a decode-and-forward (DF) cooperative ARQ relay scheme were characterized
for both slow and fast fading channels as a means to study the diversity-multiplexing-delay tradeoff. Recently,
a closed-form asymptotically tight approximation of the outage probability for the DF cooperative ARQ re-
lay scheme was developed under fast fading conditions [16]. It was shown that the cooperative ARQ scheme
achieves diversity order equal to 2L − 1 while the diversity order of the direct ARQ transmission scheme is
only L, where L is the maximum number of (re)transmission rounds.

In wireless links formed by wireless devices with limited power resources, power efficiency is a key research
matter in the optimization of ARQ retransmission protocols [17]–[21]. In both [17] and [18], the power ef-
ficiency of ARQ protocols was examined under the assumption of the same transmission power level in each
(re)transmission round. In [19], by assuming that partial channel state information (CSI) is available, optimal
transmission power in each (re)transmission round was determined for an H-ARQ protocol by a linear pro-
gramming method that selects a power value from a set of discrete power levels. In [20], without assuming
CSI available at the transmitter side, an optimal power transmission strategy was identified for a basic ARQ
protocol where the receiver decodes based only on the received signal in each (re)transmission round. It was
assumed that the channel changes independently in each round. In [21], by a recursive calculation, an optimal
power assignment sequence for an H-ARQ protocol was determined in quasi-static Rayleigh fading, in which
the channel does not change during (re)transmissions of the same information packet.

Note that, while the average total power consumption needed in the delivery of each information packet has
been well understood for the conventional non-cooperative H-ARQ protocols [19]–[21], the study of coopera-
tive H-ARQ counterpart has been proven very challenging with no available results until this present work. In
this project, we try to determine the optimal power sequence assignment that minimizes the average total power
consumption for the cooperative H-ARQ relaying protocol in which each relay forwards Alamouti-based re-
transmission signals. We consider a quasi-static Rayleigh fading environment by assuming that the channels do
not change during (re)transmissions of the same information packet and they may change independently when
the protocol transmits a new information packet. We develop a new analytical approach and obtain a closed-
form expression of the average total transmission power. The closed-form result is valid for any maximum
number of (re)transmission rounds L allowed in the protocol in which the source may use varying transmission
power level per round. The closed-form expression may serve, therefore, as the basis to optimize power alloca-
tion for the cooperative H-ARQ relaying protocol. However, the closed-form expression is rather complicated

3
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for large L, so we develop a simple approximation of the average total transmission power which is tight at high
SNR. Based on the asymptotically tight approximation, we are able to identify the sequence of power values
that minimizes the average total power consumption of the cooperative H-ARQ relaying protocol for any given
targeted outage probability. In particular, we derive a set of equations that describe the optimal power level in
each (re)transmission and enable its recursive calculation with fixed searching complexity. When the maximum
number of (re)transmissions allowed in the protocol is L = 2, we have a closed-form result for the optimal
transmission power sequence. The optimal power assignment solution reveals that conventional equal power
assignment scheme which uses the same transmission power in all (re)transmission rounds is not optimal. As
an example, for a targeted outage probability of 10−4 and the maximum number of (re)transmissions L = 3,
the average total transmission power based on the optimal power assignment is 6 dB less than that of using
the common equal power scheme. We also observe that the larger the maximum number of (re)transmissions
allowed in the cooperative H-ARQ protocol or the lower the required outage probabilities, the more power
savings the optimal power assignment strategy offers. Extensive simulation and numerical results are provided
to illustrate and validate our theoretical development.

2.2 Overview of Cooperative Communication Protocol Designs Based on Optimum Power and
Time Allocation

Cooperative communication has received significant attention recently as an emerging communication concept
for wireless networks [24, 25]. Due to the broadcast nature of wireless transmissions, cooperative communica-
tions enables neighboring network nodes to share resources and cooperate to send information to an intended
node. Distributed transmissions from source and relay nodes provide spatial diversity (as well as multiplex-
ing gain in some designs) for information detection at a destination node. Cooperative communications can
significantly improve system performance and robustness of wireless networks especially in severe fading en-
vironment. Cooperative relaying techniques have been considered in some latest communication standards, for
example, in IEEE 802.16j WiMAX standard [26] and 3GPP’s Long Term Evolution (LTE)-Advanced standard
[27].

The idea of cooperative communications can be traced back to 1970’s [28] and information-theoretic studies
have been extensively carried out since then (see [29, 30, 31, 32, 33] and the references therein). In recent
years, besides information-theoretic studies, many efforts have been shifted to design practical cooperative
communication protocols for wireless networks with specific system constraints and quality-of-service (QoS)
requirements. Various cooperative relaying protocols such as decode-and-forward (DF) relaying protocol and
amplify-and-forward (AF) relaying protocol were proposed for wireless networks (see, for examples, [34, 35,
36, 37]) and substantial performance gains of such relaying protocols have been demonstrated compared to
conventional non-cooperative transmission approach. Cooperative relaying protocols have been generalized to
multi-relay networks with either parallel or sequential multiple relays to further improve network performance
with price of higher complexity and more overhead [34, 38]. Cooperative communication protocols have also
been integrated into conventional QoS control mechanisms such as automatic-repeat-request (ARQ) protocols
to enhance reliability and robustness of wireless networks [39, 40]. Cooperative relaying techniques have been
applied to multimedia wireless broadcast and multicast applications with substantial data rate increase and
power saving [41, 42]. More thorough discussions on basic theories, protocols, and applications for cooperative
communications can be found in [24, 25].

Resource allocation in cooperative communication protocols such as power budget and time allocation to
source and relays plays an important role in the overall performance of the protocols. Note that most existing
works on cooperative relaying protocol designs considered equal-time allocation scenario, i.e. equal time du-
ration is assigned to each source and each relay [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. For example,
with equal-time allocation, in [43] source and relay power allocation was optimized such that the outage prob-
ability of the cooperative relaying protocol is minimized. In [44], also with equal-time allocation, optimum
power allocation was determined in which symbol error rate (SER) performances of both DF and AF relaying
protocols were optimized respectively. However, there are rather limited studies on non-equal time allocation
scenario and further on joint optimization of power allocation and time allocation in cooperative relaying pro-
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tocol designs. In [46], by assuming that instantaneous channel state information (CSI) of source-destination,
source-relay and relay-destination links are available, joint power and time allocation were optimized in order
to minimize the outage probability of the cooperative communication system. In [47], it was shown that the
problem of minimizing the outage probability with respect to joint power and time allocation at source and
relays is a multi-variable convex optimization problem for nonorthogonal cooperative communication systems
where the source and the relay are allowed to transmit simultaneously. However, numerical method was consid-
ered in [47] to solve the convex optimization problem without analytical solutions. It is hard to obtain insight
understanding of the cooperative relaying protocols based on the numerical results. We note that in both [46]
and [47], independent codebooks were used for source and relays in the cooperative relaying protocol designs.

In this project, we intend to design and optimize cooperative communication protocols by exploring all
possible variations in time and power domains. We assume that the channels are known at the receiver side,
but not at the transmitter side. We consider an orthogonal cooperative communication scenario, in which the
source transmits signals in Phase I and the relay decodes the signals and forwards them to the destination in
Phase II. First, we analyze an ideal cooperative communication protocol where the system can use arbitrary
re-encoding methods at the relay and adjust time allocation arbitrarily between Phases I and II. We are able
to obtain an optimum strategy of power and time allocations to minimize the outage probability of the ideal
cooperative protocol. Specifically, for any given time allocation, we are able to determine the corresponding
optimum power allocation at the source and relay analytically with a closed-form expression. We also show
theoretically that in order to minimize the outage probability of the protocol, one should always allocate more
energy and time to Phase I than that to Phase II in the protocol.

Note that in the ideal cooperative protocol in which there is no constraint on the re-encoding methods and
time allocation, it may not be easy or feasible to implement it in practical systems. So, next we would like
to propose a practical cooperative communication protocol design based on linear mapping. The theoretical
results from the ideal cooperative protocol will serve as guideline and benchmark in the practical cooperative
protocol design. More specifically, we design a cooperative communication protocol by considering linear
mapping as the re-encoding method at the relay, where the protocol uses integer time slots in Phases I and
II. It is much easier to implement the linear mapping forwarding method with the time allocation of integer
time slots in the two phases in practical systems. We also develop an optimum linear mapping to minimize
the outage probability of the linear-mapping based cooperative protocol. Interestingly, simulation results show
that the performance of the proposed cooperative protocol based on the optimum linear mapping is close to the
performance benchmark of the ideal cooperative protocol.

3 Models, Assumptions, Methods and Procedures

3.1 Cooperative Hybrid-ARQ Relaying in Wireless Networks: Average Power Consumption
and Optimal Power Assignment

In this subsection, we determine optimal transmission power sequence for cooperative hybrid automatic-repeat-
request (H-ARQ) relaying protocol in wireless networks. First, we describe briefly the cooperative H-ARQ
relaying protocol. Second, we derive the average total transmission power expended in the delivery of each
information packet. Third, we develop an approximation of the average total transmission power which is tight
at high SNR. Fourth, we determine an optimal power assignment strategy for the cooperative H-ARQ relaying
protocol based on the approximation of the average total transmission power developed in the previous section.
Finally, numerical and simulation studies are carried out to compare the performance of the optimal and equal
power assignment strategies.

3.1.1 System Model

For simplicity in presentation, we consider a cooperative H-ARQ relaying model with one source, one relay
and one destination, as illustrated in Fig. 1. We assume that L is the maximum number of (re)transmission
rounds allowed in the protocol. The cooperative H-ARQ relaying scheme operates as follows. First, the source
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Figure 1: Illustration of a cooperative H-ARQ relaying protocol with source (re)transmission power Ps,m (1 ≤
m ≤ L) and relay power Pr,n (k + 1 ≤ n ≤ L) when the relay decodes correctly at the k-th round and starts
cooperating at round (k + 1).

broadcasts an information packet to the destination and the relay. The destination sends a single bit of acknowl-
edgement (ACK) or negative-acknowledgement (NACK) indicating success or failure of receiving the packet,
respectively, to both the source and the relay. The ACK/NACK feedback is assumed to be detected error-free
at the source and the relay. If ACK is received by the source or retransmission reaches the maximum number
of rounds L, the source begins transmission of a new information packet. If NACK is received by the source
and the maximum number of rounds L is not reached, the source retransmits the packet at a potentially differ-
ent transmission power. If the relay decodes successfully ahead of the destination, the relay starts cooperating
with the source by forwarding the packet to the destination by using a space-time transmission scheme [14],
for example the Alamouti scheme [23]. The destination combines the signals from the source and the signals
from the relay and jointly decodes the information packet. If the destination still cannot decode an information
packet after L (re)transmission rounds, an outage event is declared which means that the signal-to-noise (SNR)
of the combined received signals is below a required SNR. The probability of an outage event is referred to as
the outage probability.

The cooperative H-ARQ relaying scheme can be modeled as follows. The received signal yr,m at the relay at
the m-th (1 ≤ m ≤ L) H-ARQ (re)transmission round can be modeled as

yr,m =
√

Ps,mhsrxs + ηr,m, (1)

where Ps,m is the source transmitted power at the m-th H-ARQ (re)transmission round, hsr is the coefficient
of the source-relay channel, xs is the transmitted information packet from the source, and ηr,m is additive
noise. If the relay is not involved in forwarding, the received signal yd,m at the destination at the m-th H-ARQ
(re)transmission round is

yd,m =
√

Ps,mhsdxs + ηd,m, (2)

where hsd is the source-destination channel coefficient.
If the relay decodes the packet from the source successfully, it helps in forwarding it to the destination using

the Alamouti scheme. It is assumed that the relay knows the codeword of the packet. Specifically, if the packet is
partitioned into two parts as xs = [xs,1 xs,2], then the relay forwards a corresponding vector xr =

[
−x∗s,2 x

∗
s,1

]
.

The received signal yd,m at the destination at the m-th H-ARQ (re)transmission round with relay forwarding
can be written as

yd,m =
√

Ps,mhsdxs +
√

Prhrdxr + ηd,m, (3)
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where Pr is the relay transmitted power which is assumed to be fixed over all retransmission rounds1 and hrd
is the channel coefficient from the relay to the destination. At the destination, the packet xs can be recovered
based on the orthogonal structure of the Alamouti code. The destination combines the received signals from all
(re)transmission rounds and jointly decodes the information packet. We consider quasi-static Rayleigh fading
channels, i.e., the channel coefficients are assumed to be fixed during (re)transmissions of a packet and may
change independently when a new information packet is transmitted. The channel state information is assumed
to be known at the receiver side and unknown at the transmitter side. The channel coefficients hsd, hsr and hrd
are modeled as independent, zero-mean complex Gaussian random variables with variances 1/λsd, 1/λsr and
1/λrd, respectively. The noise variances ηr,m and ηd,m are modeled as zero-mean complex Gaussian random
variables with variance N0.

3.1.2 Average Total Transmission Power of the Protocol

In this subsection, we first study the overall SNR at the relay and at the destination resulting from the cooperative
H-ARQ retransmissions. Then, we calculate the probability of the event that the cooperative H-ARQ relaying
protocol stops successfully at the l-th (1 ≤ l ≤ L) round. Finally, we are able to derive the average total
transmission power of the cooperative H-ARQ protocol.

The relay is to combine the received signals from all previous (re)transmission rounds from the source based
on maximal ratio combining (MRC) technique [22] and jointly decode the information packet. Then, the SNR
of the MRC output at the relay at the l-th (1 ≤ l ≤ L) round is

γr,l =

∑l
m=1 Ps,m|hsr|2

N0
. (4)

The destination combines the received signals from all previous rounds from the source and the relay by using
the MRC technique and then jointly decodes the information packet. To determine the overall SNR of the
combined signal at the destination, we need the following lemma.

Lemma 1 In the cooperative H-ARQ relaying scheme, if the relay decodes successfully a packet from the
source at the k-th (1 ≤ k < L) (re)transmission round and starts forwarding at round k + 1, then the overall
SNR at the destination at the l-th (k ≤ l ≤ L) round is given by

γd,l,k =

∑l
m=1 Ps,m|hsd|2 + (l − k)Pr|hrd|2

N0
. (5)

Proof : First, let us focus on a single transmission round. Since the packet from the source can be writ-
ten as xs = [xs,1 xs,2] and the relay forwards xr =

[
−x∗s,2 x

∗
s,1

]
, so the corresponding received signals

[yd,m,1 yd,m,2]
T at the destination at the m-th (1 ≤ m ≤ L) round are[

yd,m,1

yd,m,2

]
=

[√
Ps,mxs,1 −

√
Pr,mx∗s,2√

Ps,mxs,2
√

Pr,mx∗s,1

] [
hsd
hrd

]
+

[
ηd,m,1

ηd,m,2

]
,

where

Pr,m =

{
0, if m ≤ k;
Pr, if m > k.

(Recall that the relay is assumed to decode correctly at the k-th round and starts forwarding at the (k + 1)-th
round with fixed transmission power.)

1For simplicity in the treatment herein as well as practical system implementation purposes, it is assumed that relay helpers have
fixed, non varying, power level across retransmissions.
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The received signal vector can be rewritten as[
yd,m,1

y∗d,m,2

]
︸ ︷︷ ︸

,Ym

=

[√
Ps,mhsd −

√
Pr,mhrd√

Pr,mh∗rd
√
Ps,mh∗sd

]
︸ ︷︷ ︸

,Hm

[
xs,1
x∗s,2

]
︸ ︷︷ ︸

,x

+

[
ηd,m,1

η∗d,m,2

]
︸ ︷︷ ︸

,Nm

.

Thus, the SNR at the destination at the m-th round is

SNRm =
∥Hmx∥2F
∥Nm∥2F

, (6)

where ∥Hmx∥2F is the Frobenius norm (or total power) of Hmx. Note that

∥Hmx∥2F = tr
(
xxHHH

mHm

)
=
(
|xs,1|2 + |xs,2|2

) (
Ps,m|hsd|2 + Pr,m|hrd|2

)
.

Let us assume that the length and (normalized) power of the packet xs is J . Then, we have ∥Hmx∥2F =
J
(
Ps,m|hsd|2 + Pr,m|hrd|2

)
and ∥Nm∥2F = JN0. Thus, the SNR at the destination at the m-th round is

SNRm =
Ps,m|hsd|2 + Pr,m|hrd|2

N0
, (7)

where Pr,m = 0 if m ≤ k and Pr,m = Pr if m > k. Therefore, the overall SNR at the destination by combining
all received signals from the first l rounds is

γd,l,k =

l∑
m=1

SNRm =

k∑
m=1

Ps,m|hsd|2

N0
+

l∑
m=k+1

Ps,m|hsd|2 + Pr|hrd|2

N0
, (8)

which leads to the result in the Lemma. �

3.1.3 Probability of the Protocol Successfully Completing at the l-th (1 ≤ l ≤ L) Round

When the destination successfully decodes an information packet, the cooperative H-ARQ protocol stops and
that may happen at any round. In this subsection, we derive the probability of the event that the protocol stops
at the l-th (1 ≤ l ≤ L) round. This probability is a key result in determining the average total transmission
power.

Let {Tr = k} denote the event that the relay decodes successfully at the k-th round and starts forwarding at
round (k + 1), for any k = 1, 2, · · · , l − 1. Especially, let {Tr = l} denote the event that the relay decodes
unsuccessfully in the first l− 1 rounds (in this case, the relay has no participation in message forwarding when
the protocol finishes at the l-th round). Furthermore, let pstop,1 denote the probability that the H-ARQ protocol
stops at the first transmission round (l = 1), which means that the destination decodes successfully at round
one. When 2 ≤ l ≤ L− 1, let ql,k denote the conditional probability that the H-ARQ protocol stops at the l-th
round given that the event {Tr = k} occurred. In other words, ql,k is the probability of H-ARQ stopping at the l-
th round under the condition that the relay started forwarding at the (k+1)-th round for any k = 1, 2, · · · , l−1.
Especially, let ql,l (2 ≤ l ≤ L − 1) denote the probability that the protocol stops successfully at the l-th round
before the relay can help. Moreover, when l = L, let qL,k denote the conditional probability that the protocol
stops at the L-th round no matter whether decoding at the L-th round is successful or not under the condition
that the relay started forwarding at the (k+1)-th round for any k = 1, 2, · · · , L−1. Especially, let qL,L denote
the probability that the protocol stops at the last round regardless of successful decoding or not (in this case
again the relay has no chance to help).

With the above notation, the average total transmission power of the cooperative H-ARQ relaying protocol
can be given by

P̄ (L) = Ps,1p
stop,1 +

L∑
l=2

l∑
k=1

ql,kPr [Tr = k]Rl,k, (9)
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where Rl,k is the transmission power that the source and the relay spend totally up to the l-th round, which is
given by

Rl,k = Ωl + (l − k)Pr, (10)

in which

Ωl =

l∑
m=1

Ps,m. (11)

First, we calculate the probability Pr [Tr = k] in (9). For any given targeted SNR γ0, the probability that the
relay decodes the packet successfully at the first round (Tr = 1) is

Pr [Tr = 1] = Pr
[
Ps,1|hsr|2

N0
≥ γ0

]
= e

−λsrγ̃0
Ps,1 , (12)

where γ̃0 , γ0N0. For any Tr = k, k = 2, 3, ..., l − 1, the probability that the relay decodes successfully at
the k-th round, which means that the overall SNR is below the targeted SNR γ0 until the (k − 1)-th round but
above γ0 at the subsequent k-th round, is calculated as

Pr [Tr = k] = Pr [γr,k−1 < γ0, γr,k ≥ γ0]

= Pr
[
γ0 −

Ps,k|hsr|2

N0
≤ γr,k−1 < γ0

]
= Pr [γr,k−1 < γ0]− Pr [γr,k < γ0]

= e
−λsrγ̃0

Ωk − e
−λsrγ̃0

Ωk−1 . (13)

When Tr = l, we have

Pr [Tr = l] = Pr [γr,l−1 < γ0] = 1− e
−λsrγ̃0

Ωl−1 . (14)

Next, we calculate the conditional probability ql,k in (9). When l = 1, the probability that the protocol stops
at the first round is

pstop,1 = Pr
[
Ps,1|hsd|2

N0
≥ γ0

]
= e

−λsdγ̃0
Ps,1 . (15)

When 2 ≤ l ≤ L−1, we consider two scenarios: (i) k = 1, 2, ..., l−1, and (ii) k = l. For any k = 1, 2, ..., l−1,
the conditional probability ql,k is given by

ql,k = Pr [γd,l−1,k < γ0, γd,l,k ≥ γ0] = Pr
[
a ≤ |hsd|2 < b

]
, (16)

where

a =
γ̃0 − (l − k)Pr|hrd|2

Ωl
, b =

γ̃0 − (l − k − 1)Pr|hrd|2

Ωl−1
.

We observe that b should not be negative, i.e.,

b =
γ̃0 − (l − k − 1)Pr|hrd|2

Ωl−1
≥ 0,

which implies that |hrd|2 ≤ γ̃0
(l−k−1)Pr

. When a < 0, it means |hrd|2 > γ̃0
(l−k)Pr

. When a ≥ 0, it means

|hrd|2 ≤ γ̃0
(l−k)Pr

. Therefore, the conditional probability (16) can be calculated as follows

ql,k =

[∫ γ̃0
(l−k)Pr

|hrd|2=0

∫ b

|hsd|2=a
+

∫ γ̃0
(l−k−1)Pr

|hrd|2=
γ̃0

(l−k)Pr

∫ b

|hsd|2=0

]
λsde

−λsd|hsd|2λrde
−λrd|hrd|2d|hsd|2d|hrd|2

, A1 +A2 −A3, (17)
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where

A1 =

∫ γ̃0
(l−k)Pr

0
e−λsdaλrde

−λrd|hrd|2d|hrd|2

=
λrd

λsd(l−k)Pr

Ωl
− λrd

(
e
− λrdγ̃0

(l−k)Pr − e
−λsdγ̃0

Ωl

)
, (18)

A2 =

∫ γ̃0
(l−k−1)Pr

γ̃0
(l−k)Pr

λrde
−λrd|hrd|2d|hrd|2

= e
− λrdγ̃0

(l−k)Pr − e
− λrdγ̃0

(l−k−1)Pr , (19)

A3 =

∫ γ̃0
(l−k−1)Pr

0
e−λsdbλrde

−λrd|hrd|2d|hrd|2

=
λrd

λsd(l−k−1)Pr

Ωl−1
− λrd

(
e
− λrdγ̃0

(l−k−1)Pr − e
−λsdγ̃0

Ωl−1

)
. (20)

In case of k = l, the conditional probability ql,l is given by

ql,l = Pr [γd,l−1,l−1 < γ0, γd,l,l ≥ γ0]

= Pr
[
γ̃0
Ωl

≤ |hsd|2 <
γ̃0

Ωl−1

]
= e

−λsdγ̃0
Ωl − e

−λsdγ̃0
Ωl−1 . (21)

When l = L, to calculate the conditional probability qL,k, we also consider two scenarios: (i) k = 1, 2, ..., L−
1, and (ii) k = L. For any k = 1, 2, ..., L− 1, the conditional probability qL,k is given by

qL,k = Pr [γd,L−1,k < γ0] = Pr
[
|hsd|2 < c

]
, (22)

where

c =
γ̃0 − (L− k − 1)Pr|hrd|2

ΩL−1
.

Note that c should not be negative, i.e., c ≥ 0, which implies that |hrd|2 ≤ γ̃0
(L−k−1)Pr

. Therefore, the condi-
tional probability (22) can be calculated as follows

qL,k =

∫ γ̃0
(L−k−1)Pr

|hrd|2=0

∫ c

|hsd|2=0
λsde

−λsd|hsd|2λrde
−λrd|hrd|2d|hsd|2d|hrd|2 , BL−1,k, (23)

where
Bi,j = 1− e

− λrdγ̃0
(i−j)Pr − λrd

λsd(i−j)Pr

Ωi
− λrd

(
e
− λrdγ̃0

(i−j)Pr − e
−λsdγ̃0

Ωi

)
. (24)

For k = L, the conditional probability qL,L is given by

qL,L = Pr [γd,L−1,L−1 < γ0] = 1− e
−λsdγ̃0

ΩL−1 . (25)

Based on the above analysis, the average total transmission power in (9) for the cooperative H-ARQ relaying
protocol can be given specifically in the following theorem.

Theorem 1 In the cooperative H-ARQ relaying protocol, the average total transmission power is

P̄ (L) = Ps,1e
−λsdγ̃0

Ps,1 +

L−1∑
l=2

(
l−1∑
k=1

Cl,k + Cl,l

)
+

(
L−1∑
k=1

Dk +DL

)
, (26)
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where

Cl,k = ql,kPr [Tr = k]Rl,k

= (A1 +A2 −A3)

(
e
−λsrγ̃0

Ωk − e
−λsrγ̃0

Ωk−1

)[ l∑
m=1

Ps,m + (l − k)Pr

]
, 1 ≤ k ≤ l − 1,

Cl,l = ql,lPr [Tr = l]Rl,l

=

(
e
−λsdγ̃0

Ωl − e
−λsdγ̃0

Ωl−1

)(
1− e

−λsrγ̃0
Ωl−1

) l∑
m=1

Ps,m,

Dk = qL,kPr [Tr = k]RL,k

= BL−1,k

(
e
−λsrγ̃0

Ωk − e
−λsrγ̃0

Ωk−1

)[ L∑
m=1

Ps,m + (L− k)Pr

]
, 1 ≤ k ≤ L− 1,

DL = qL,LPr [Tr = L]RL,L

=

(
1− e

−λsdγ̃0
ΩL−1

)(
1− e

−λsrγ̃0
ΩL−1

) L∑
m=1

Ps,m,

in which A1, A2 and A3 are specified in (18)–(20), and BL−1,k is specified in (24), respectively. Also, γ̃0 ,
γ0N0, γ0 is the target SNR, N0 is the additive white noise variance, and 1/λsd, 1/λsr and 1/λrd are the
variances of the source-destination, the source-relay and the relay-destination fading channels, respectively. �

When L = 2, the average total transmission power expression P̄ in (26) reduces to

P̄ (L = 2) = Ps,1 +
(
1− e

−λsdγ̃0
Ps,1

)(
Ps,2 + e

−λsrγ̃0
Ps,1 Pr

)
. (27)

3.1.4 Asymptotically Tight Approximation of the Average Total Transmission Power

The general closed-form expression in (26) for the average total transmission power is certainly complicated.
In this section, we try to develop a simple and tight approximation of the average total transmission power.

When L = 2, if we approximate e−x by 1 − x for small x (corresponding to high SNR), then the average
total transmission power P̄ in (27) can be approximated as

P̄ (L = 2) ≈ Ps,1 + (Ps,2 + Pr)
λsdγ̃0
Ps,1

, (28)

which is tight at high SNR. When L ≥ 3, however, it is difficult to derive the approximation of P̄ (L ≥ 3)
directly from (26). So, we first reformulate the average total transmission power P̄ in (26) which enables us to
develop a tight approximation at high SNR.

For simplicity, let us denote C̃l,k = ql,kPr [Tr = k] for k = 1, 2, · · · , l− 1, and C̃l,l = ql,lPr [Tr = l]. Denote
D̃k = qL,kPr [Tr = k] for k = 1, 2, · · · , L − 1, and D̃L = qL,LPr [Tr = L]. The new notation corresponds to

the notation Cl,k, Cl,l, Dk, and DL defined in Theorem 1. We observe that Cl,k = C̃l,k

[∑l
m=1 Ps,m + (l −

k)Pr

]
, Cl,l = C̃l,l

∑l
m=1 Ps,m, Dk = D̃k

[∑L
m=1 Ps,m + (L− k)Pr

]
, and DL = D̃L

∑L
m=1 Ps,m. Therefore,

the average total transmission power in (26) can be rewritten by switching the summation order (in terms of
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Ps,m, 1 ≤ m ≤ L, and Pr first) as follows

P̄ (L) = Ps,1

[
e
−λsdγ̃0

Ps,1 +
L−1∑
l=2

l∑
k=1

C̃l,k +
L∑

k=1

D̃k

]

+

L−1∑
m=2

Ps,m

[
L−1∑
l=m

l∑
k=1

C̃l,k +

L∑
k=1

D̃k

]
+ Ps,L

L∑
k=1

D̃k

+Pr

[
L−1∑
l=2

l−1∑
k=1

(l − k)C̃l,k +

L−1∑
k=1

(L− k)D̃k

]

,
L∑

m=1

Ps,mQm + PrQr, (29)

where

Q1 = e
−λsdγ̃0

Ps,1 +

L−1∑
l=2

l∑
k=1

C̃l,k +

L∑
k=1

D̃k, (30)

Qm =

L−1∑
l=m

l∑
k=1

C̃l,k +

L∑
k=1

D̃k, 2 ≤ m ≤ L− 1, (31)

QL =
L∑

k=1

D̃k, (32)

Qr =
L−1∑
l=2

l−1∑
k=1

(l − k)C̃l,k +
L−1∑
k=1

(L− k)D̃k. (33)

We observe that

Q1 = Q2 + e
−λsdγ̃0

Ps,1 , (34)

and for any m = 2, 3 · · · , L− 1,

Qm = Qm+1 +
m∑
k=1

C̃m,k. (35)

In the following, we calculate Qm for any m = 1, 2, · · · , L. Since Qm can be determined by using the
previously determined Qm+1 according to (34) and (35), we derive QL, QL−1, · · · , Q1 in a reverse sequential
order as follows. First, QL in (32) can be calculated specifically as follows

QL =
L−1∑
k=1

BL−1,k

(
e
−λsrγ̃0

Ωk − e
−λsrγ̃0

Ωk−1

)
+

(
1− e

−λsdγ̃0
ΩL−1

)(
1− e

−λsrγ̃0
ΩL−1

)

=

L−2∑
k=1

e
−λsrγ̃0

Ωk (BL−1,k −BL−1,k+1) +

(
1− e

−λsdγ̃0
ΩL−1

)
, (36)

12
Approved for Public Release; Distribution Unlimited.



where Bi,j is specified in (24). For any l = L− 1, L− 2, · · · , 3, Ql in (35) can be calculated as follows2

Ql = Ql+1 +
l−1∑
k=1

(A1 +A2 −A3)

(
e
−λsrγ̃0

Ωk − e
−λsrγ̃0

Ωk−1

)
+

(
e
−λsdγ̃0

Ωl − e
−λsdγ̃0

Ωl−1

)(
1− e

−λsrγ̃0
Ωl−1

)

= Ql+1 −

[
l−1∑
k=1

Bl,k

(
e
−λsrγ̃0

Ωk − e
−λsrγ̃0

Ωk−1

)
+

(
1− e

−λsdγ̃0
Ωl

)(
1− e

−λsrγ̃0
Ωl−1

)]

+

[
l−1∑
k=1

Bl−1,k

(
e
−λsrγ̃0

Ωk − e
−λsrγ̃0

Ωk−1

)
+

(
1− e

−λsdγ̃0
Ωl−1

)(
1− e

−λsrγ̃0
Ωl−1

)]

= Ql+1 −

[
l−1∑
k=1

e
−λsrγ̃0

Ωk (Bl,k −Bl,k+1) +

(
1− e

−λsdγ̃0
Ωl

)]

+

[
l−2∑
k=1

e
−λsrγ̃0

Ωk (Bl−1,k −Bl−1,k+1) +

(
1− e

−λsdγ̃0
Ωl−1

)]
, (37)

in which A1, A2 and A3 are specified in (18)–(20), and Bi,j is specified in (24), respectively. When l = L− 1,
substituting QL in (36) into (37), we have

QL−1 = QL −

[
L−2∑
k=1

e
−λsrγ̃0

Ωk (BL−1,k −BL−1,k+1) +

(
1− e

−λsdγ̃0
ΩL−1

)]
︸ ︷︷ ︸

= 0

+

[
L−3∑
k=1

e
−λsrγ̃0

Ωk (BL−2,k −BL−2,k+1) +

(
1− e

−λsdγ̃0
ΩL−2

)]

=

L−3∑
k=1

e
−λsrγ̃0

Ωk (BL−2,k −BL−2,k+1) +

(
1− e

−λsdγ̃0
ΩL−2

)
. (38)

When l = L− 2, substituting the above derivation (38) into (37), we can calculate QL−2 as

QL−2 = QL−1 −

[
L−3∑
k=1

e
−λsrγ̃0

Ωk (BL−2,k −BL−2,k+1) +

(
1− e

−λsdγ̃0
ΩL−2

)]
︸ ︷︷ ︸

= 0

+

[
L−4∑
k=1

e
−λsrγ̃0

Ωk (BL−3,k −BL−3,k+1) +

(
1− e

−λsdγ̃0
ΩL−3

)]

=

L−4∑
k=1

e
−λsrγ̃0

Ωk (BL−3,k −BL−3,k+1) +

(
1− e

−λsdγ̃0
ΩL−3

)
. (39)

Assume that for any l ≥ l0(< L), it is true that

Ql =

l−2∑
k=1

e
−λsrγ̃0

Ωk (Bl−1,k −Bl−1,k+1) +

(
1− e

−λsdγ̃0
Ωl−1

)
, l = L− 1, L− 2, · · · , l0, (40)

2To maintain the simplicity of the notation, we change subscript m in (35) into l.
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then for l = l0 − 1, we have

Ql0−1 = Ql0 −

[
l0−2∑
k=1

e
−λsrγ̃0

Ωk (Bl0−1,k −Bl0−1,k+1) +

(
1− e

− λsdγ̃0
Ωl0−1

)]
︸ ︷︷ ︸

= 0

+

[
l0−3∑
k=1

e
−λsrγ̃0

Ωk (Bl0−2,k −Bl0−2,k+1) +

(
1− e

− λsdγ̃0
Ωl0−2

)]

=

l0−3∑
k=1

e
−λsrγ̃0

Ωk (Bl0−2,k −Bl0−2,k+1) +

(
1− e

− λsdγ̃0
Ωl0−2

)
, (41)

i.e., the result in (40) is also true for l = l0 − 1. Thus, by induction we can conclude that for any l =
L− 1, L− 2, · · · , 3, we have

Ql =
l−2∑
k=1

e
−λsrγ̃0

Ωk (Bl−1,k −Bl−1,k+1) +

(
1− e

−λsdγ̃0
Ωl−1

)
. (42)

When l = 2, from Q3 = e
−λsrγ̃0

Ω1 (B2,1 −B2,2) +

(
1− e

−λsdγ̃0
Ω2

)
, we can calculate Q2 in the following

Q2 = Q3 + C̃2,1 + C̃2,2

= Q3 +
λsd

λsd − λrdΩ2
Pr

e
−λsrγ̃0

Ω1

(
e−

λrdγ̃0
Pr − e

−λsdγ̃0
Ω2

)
+

(
e
−λsdγ̃0

Ω2 − e
−λsdγ̃0

Ω1

)
= 1− e

−λsdγ̃0
Ω1 . (43)

When l = 1, substituting Q2 = 1− e
−λsdγ̃0

Ω1 into (34), we have

Q1 = Q2 + e
−λsdγ̃0

Ω1 = 1. (44)

We may further approximate the probability Ql for any l = 2, 3, · · · , L. When l = 2, if we approximate e−x

by 1− x for small x (high SNR), then Q2 in (43) can be approximated as

Q2 ≈
λsdγ̃0
Ω1

. (45)

Note that if we approximate e−x by 1−x+ 1
2x

2 for small x (high SNR), then for 1 ≤ k ≤ l−3, e−
λsrγ̃0
Ωk (Bl−1,k−

Bl−1,k+1) in (42) can be approximated as3

e
−λsrγ̃0

Ωk (Bl−1,k −Bl−1,k+1) ≈
λsdγ̃0
2Ωl−1

λrdγ̃0
Pr

(
1

l − 1− k
− 1

l − 2− k

)
, (46)

and when k = l − 2,

e
−λsrγ̃0

Ωl−2 (Bl−1,l−2 −Bl−1,l−1) ≈
λsdγ̃0
Ωl−1

(
−1 +

λsrγ̃0
Ωl−2

+
λsdγ̃0
2Ωl−1

+
λrdγ̃0
2Pr

)
. (47)

3When we approximate e−x by the first three terms of its Taylor expansion 1− x+ 1
2
x2 for small x (corresponding to high SNR),

then e−x1 − e−x2 can be tightly approximated as (x1 − x2)
[
−1 + 1

2
(x1 + x2)

]
.
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Therefore, for any l = 3, 4, · · · , L, Ql in (36) and (42) can be approximated as

Ql ≈
l−3∑
k=1

λsdγ̃0
2Ωl−1

λrdγ̃0
Pr

(
1

l − 1− k
− 1

l − 2− k

)
︸ ︷︷ ︸

=
λsdγ̃0
2Ωl−1

λrdγ̃0
Pr

( 1
l−2

−1)

+
λsdγ̃0
Ωl−1

(
λsrγ̃0
Ωl−2

+
λrdγ̃0
2Pr

)
+

λsdγ̃0
Ωl−1

(
−1 +

λsdγ̃0
2Ωl−1

)
+

λsdγ̃0
Ωl−1

− 1

2

(
λsdγ̃0
Ωl−1

)2

︸ ︷︷ ︸
= 0

=
λsdγ̃0
Ωl−1

(
λsrγ̃0
Ωl−2

+
λrdγ̃0

2(l − 2)Pr

)
. (48)

The above calculation of the probability Ql can be summarized in the following lemma.

Lemma 2 The probability Ql in (30)–(32) has a closed-form expression as follows:

Ql =



1, l = 1;

1− e
−λsdγ̃0

Ω1 , l = 2;∑l−2
k=1 e

−λsrγ̃0
Ωk (Bl−1,k −Bl−1,k+1) +

(
1− e

−λsdγ̃0
Ωl−1

)
, 3 ≤ l ≤ L,

(49)

where Bi,j is specified in (24). Furthermore, the probability Ql can be tightly approximated by

Ql ≈


λsdγ̃0
Ω1

, l = 2;

λsdγ̃0
Ωl−1

(
λsr γ̃0
Ωl−2

+ λrdγ̃0
2(l−2)Pr

)
, 3 ≤ l ≤ L.

(50)

Next, we calculate the probability Qr in (33). To calculate Qr more efficiently, we partition Qr as follows
(corresponding to Q2, Q3, · · · , QL)

Qr ,
L∑
i=2

Qr,i, (51)

where

Qr,2 =

L−1∑
l=2

C̃l,1 + D̃1, (52)

Qr,i =

L−1∑
l=i

l−1∑
k=1

C̃l,k +

L−2∑
k=1

D̃k −
L−2∑
k=i

(
L−1∑

l=k+1

C̃l,k + D̃k

)
, 3 ≤ i ≤ L− 2, (53)

Qr,L−1 =
L−2∑
k=1

C̃L−1,k +
L−2∑
k=1

D̃k, (54)

Qr,L =
L−1∑
k=1

D̃k. (55)

We observe that

Qr,L−1 = Qr,L +

L−2∑
k=1

C̃L−1,k − D̃L−1, (56)
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and for any i = 3, 4 · · · , L− 2,

Qr,i = Qr,i+1 +
i−1∑
k=1

C̃i,k −

(
L−1∑
l=i+1

C̃l,i + D̃i

)
. (57)

In the following, we calculate Qr,i for any i = 2, 3 · · · , L. Since Qr,i can be determined by using the previ-
ously determined Qr,i+1 according to (56) and (57), we derive Qr,L, Qr,L−1, · · · , Qr,2 in a reverse sequential
order as follows. First, Qr,L in (55) can be calculated specifically as follows

Qr,L =

L−1∑
k=1

BL−1,k

(
e
−λsrγ̃0

Ωk − e
−λsrγ̃0

Ωk−1

)

=
L−2∑
k=1

e
−λsrγ̃0

Ωk (BL−1,k −BL−1,k+1) + e
−λsrγ̃0

ΩL−1

(
1− e

−λsdγ̃0
ΩL−1

)
, (58)

where Bi,j is specified in (24). When i = L− 1, Qr,L−1 in (56) can be elaborated as follows

Qr,L−1 = Qr,L +
L−2∑
k=1

(−BL−1,k +BL−2,k)

(
e
−λsrγ̃0

Ωk − e
−λsrγ̃0

Ωk−1

)
−
(
1− e

−λsdγ̃0
ΩL−1

)(
e
−λsrγ̃0

ΩL−1 − e
−λsrγ̃0

ΩL−2

)

= Qr,L −

[
L−2∑
k=1

e
−λsrγ̃0

Ωk (BL−1,k −BL−1,k+1) +

(
1− e

−λsdγ̃0
ΩL−1

)]

+

[
L−3∑
k=1

e
−λsrγ̃0

Ωk (BL−2,k −BL−2,k+1) + e
−λsrγ̃0

ΩL−2

(
1− e

−λsdγ̃0
ΩL−2

)]
. (59)

By substituting Qr,L in (58) into (59), we have

Qr,L−1 =

L−3∑
k=1

e
−λsrγ̃0

Ωk (BL−2,k −BL−2,k+1) + e
−λsrγ̃0

ΩL−2

(
1− e

−λsdγ̃0
ΩL−2

)
−
(
1− e

−λsrγ̃0
ΩL−1

)(
1− e

−λsdγ̃0
ΩL−1

)
. (60)

For any i = L− 2, L− 3, · · · , 3, Qr,i in (57) can be calculated as follows

Qr,i = Qr,i+1 +

i−1∑
k=1

(−Bi,k +Bi−1,k)

(
e
−λsrγ̃0

Ωk − e
−λsrγ̃0

Ωk−1

)

−

(
L−1∑
l=i+1

(−Bl,i +Bl−1,i) +BL−1,i

)(
e
−λsrγ̃0

Ωi − e
−λsrγ̃0

Ωi−1

)

= Qr,i+1 +

i−1∑
k=1

(−Bi,k +Bi−1,k)

(
e
−λsrγ̃0

Ωk − e
−λsrγ̃0

Ωk−1

)
−Bi,i

(
e
−λsrγ̃0

Ωi − e
−λsrγ̃0

Ωi−1

)

= Qr,i+1 −

[
i−1∑
k=1

e
−λsrγ̃0

Ωk (Bi,k −Bi,k+1) + e
−λsrγ̃0

Ωi

(
1− e

−λsdγ̃0
Ωi

)]

+

[
i−2∑
k=1

e
−λsrγ̃0

Ωk (Bi−1,k −Bi−1,k+1) + e
−λsrγ̃0

Ωi−1

(
1− e

−λsdγ̃0
Ωi−1

)]
. (61)
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When i = L− 2, substituting Qr,L−1 in (60) into (61), we can calculate Qr,L−2 as

Qr,L−2 =

L−4∑
k=1

e
−λsrγ̃0

Ωk (BL−3,k −BL−3,k+1) + e
−λsrγ̃0

ΩL−3

(
1− e

−λsdγ̃0
ΩL−3

)
−
(
1− e

−λsrγ̃0
ΩL−1

)(
1− e

−λsdγ̃0
ΩL−1

)
. (62)

Assume that for any i ≥ i0(< L− 1), it is true that

Qr,i =
i−2∑
k=1

e
−λsrγ̃0

Ωk (Bi−1,k −Bi−1,k+1) + e
−λsrγ̃0

Ωi−1

(
1− e

−λsdγ̃0
Ωi−1

)
−
(
1− e

−λsrγ̃0
ΩL−1

)(
1− e

−λsdγ̃0
ΩL−1

)
, i = L− 2, L− 3, · · · , i0, (63)

then for i = i0 − 1, we have

Qr,i0−1 = Qr,i0 −

[
i0−2∑
k=1

e
−λsrγ̃0

Ωk (Bi0−1,k −Bi0−1,k+1) + e
− λsrγ̃0

Ωi0−1

(
1− e

− λsdγ̃0
Ωi0−1

)]

+

[
i0−3∑
k=1

e
−λsrγ̃0

Ωk (Bi0−2,k −Bi0−2,k+1) + e
− λsrγ̃0

Ωi0−2

(
1− e

− λsdγ̃0
Ωi0−2

)]

=

i0−3∑
k=1

e
−λsrγ̃0

Ωk (Bi0−2,k −Bi0−2,k+1) + e
− λsrγ̃0

Ωi0−2

(
1− e

− λsdγ̃0
Ωi0−2

)
−
(
1− e

−λsrγ̃0
ΩL−1

)(
1− e

−λsdγ̃0
ΩL−1

)
, (64)

i.e., the result in (63) is also true for i = i0 − 1. Thus, by induction we can conclude that for any i =
L− 2, L− 3, · · · , 3, we have

Qr,i =
i−2∑
k=1

e
−λsrγ̃0

Ωk (Bi−1,k −Bi−1,k+1) + e
−λsrγ̃0

Ωi−1

(
1− e

−λsdγ̃0
Ωi−1

)
−
(
1− e

−λsrγ̃0
ΩL−1

)(
1− e

−λsdγ̃0
ΩL−1

)
. (65)

When i = 2, Qr,2 in (52) can be calculated directly as

Qr,2 =

L−1∑
l=2

(−Bl,1 +Bl−1,1)e
−λsrγ̃0

Ω1 +BL−1,1e
−λsrγ̃0

Ω1

= B1,1e
−λsrγ̃0

Ω1

=

(
1− e

−λsdγ̃0
Ω1

)
e
−λsrγ̃0

Ω1 . (66)

Furthermore, we can tightly approximate the probability Qr,i for any i = 2, 3, · · · , L. When i = 2, Qr,2 in
(66) can be approximated as

Qr,2 ≈ λsdγ̃0
Ω1

(
1− λsrγ̃0

Ω1
− λsdγ̃0

2Ω1

)
(67)

≈ λsdγ̃0
Ω1

, (68)
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in which the terms λsr γ̃0
Ω1

and λsdγ̃0
2Ω1

in (67) are much smaller than 1 at high SNR, which can be ignored. For any
i = 3, 4, · · · , L− 1, in a similar way as Ql in (48), Qr,i in (60) and (65) can be approximated as

Qr,i ≈ λsdγ̃0
Ωi−1

(
λsrγ̃0
Ωi−2

− λsrγ̃0
Ωi−1

+
λrdγ̃0

2(i− 2)Pr

)
− λsrγ̃0

ΩL−1

λsdγ̃0
ΩL−1

(69)

≈ λsdγ̃0
Ωi−1

(
λsrγ̃0
Ωi−2

+
λrdγ̃0

2(i− 2)Pr

)
, (70)

in which the terms λsr γ̃0
Ωi−1

and λsr γ̃0
ΩL−1

λsdγ̃0
ΩL−1

in (69) are much smaller than λsr γ̃0
Ωi−2

and λsdγ̃0
Ωi−1

λsr γ̃0
Ωi−2

, respectively, at
high SNR, which can be further ignored. When i = L, Qr,L in (58) can be approximated similarly as

Qr,L ≈ λsdγ̃0
ΩL−1

(
λsrγ̃0
ΩL−2

+
λrdγ̃0

2(L− 2)Pr

)
. (71)

The above calculation of the probability Qr can be summarized in the following lemma.

Lemma 3 The probability Qr in (33) has a closed-form expression as follows:

Qr =
L∑
i=2

Qr,i, (72)

where

Qr,i =



e
−λsrγ̃0

Ω1

(
1− e

−λsdγ̃0
Ω1

)
, i = 2;

∑i−2
k=1 e

−λsrγ̃0
Ωk (Bi−1,k −Bi−1,k+1) + e

−λsrγ̃0
Ωi−1

(
1− e

−λsdγ̃0
Ωi−1

)
−
(
1− e

−λsrγ̃0
ΩL−1

)(
1− e

−λsdγ̃0
ΩL−1

)
, 3 ≤ i ≤ L− 1;

∑L−2
k=1 e

−λsrγ̃0
Ωk (BL−1,k −BL−1,k+1) + e

−λsrγ̃0
ΩL−1

(
1− e

−λsdγ̃0
ΩL−1

)
, i = L,

(73)

in which Bi,j is specified in (24). Furthermore, the probability Qr can be tightly approximated by

Qr ≈
λsdγ̃0
Ω1

+

L∑
i=3

λsdγ̃0
Ωi−1

(
λsrγ̃0
Ωi−2

+
λrdγ̃0

2(i− 2)Pr

)
. (74)

Based on Lemmas 2 and 3, the average total transmission power P̄ (L) in (29) can be approximated as follows.

Theorem 2 In the cooperative H-ARQ relaying protocol, the average total transmission power can be tightly
approximated at high SNR scenario as

P̄ (L) ≈ Ps,1 + (Ps,2 + Pr)
λsdγ̃0
Ps,1

+

L∑
l=3

(Ps,l + Pr)
λsdγ̃0∑l−1
m=1 Ps,m

(
λsrγ̃0∑l−2
m=1 Ps,m

+
λrdγ̃0

2(l − 2)Pr

)
. (75)

�

3.1.5 Optimal Transmission Power Assignment for the Cooperative ARQ Protocol

In this subsection, we determine an optimal power assignment strategy for the cooperative H-ARQ relaying
protocol based on the asymptotically tight approximation of the average total power consumption developed in
the previous section. We derive a set of equations that describe the optimal power level in each (re)transmission
round and enable its recursive calculation with fixed searching complexity.
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Before we formulate the problem of finding the optimal transmission power sequence, we need to derive
the outage probability of the cooperative H-ARQ relaying protocol with maximum L (re)transmission rounds.
Let pout,LTr=k denote the conditional probability that the destination decodes an information packet unsuccessfully
after L (re)transmission rounds given that the event {Tr = k} occurred. In other words, pout,LTr=k is the outage
probability at the destination in spite of the fact that the relay started forwarding at the (k + 1)-th round for
any k = 1, 2, · · · , L− 1. Therefore, the outage probability of the cooperative H-ARQ relaying scheme after L
(re)transmission rounds can be represented as

pout,L =
L∑

k=1

pout,LTr=k · Pr [Tr = k] , (76)

where the probability Pr [Tr = k] is specified in (12)–(14). This outage probability is a necessary condition to
determine the optimal transmission power sequence. The conditional outage probability pout,LTr=k in (76) can be
evaluated as

pout,LTr=k = Pr [γd,L,k < γ0] , (77)

where the overall SNR γd,L,k is specified in (5). When Tr = L, we have

pout,LTr=L = Pr [γd,L,L < γ0] = 1− e
−λsdγ̃0

ΩL . (78)

For any Tr = k, k = 1, 2, ..., L− 1, the conditional outage probability is given by

pout,LTr=k = Pr

[
|hsd|2 <

γ̃0 − (L− k)Pr|hrd|2

ΩL

]
= BL,k, (79)

where Bi,j is specified in (24). Finally, based on the probability Pr [Tr = k] in (12)–(14) and the conditional
outage probability pout,LTr=k in (78) and (79), we can obtain the outage probability for the cooperative H-ARQ
relaying scheme after L (re)transmission rounds as follows

pout,L =

L−1∑
k=1

BL,k

(
e
−λsrγ̃0

Ωk − e
−λsrγ̃0

Ωk−1

)
+
(
1− e

−λsdγ̃0
ΩL

)(
1− e

−λsrγ̃0
ΩL−1

)
=

L−1∑
k=1

e
−λsrγ̃0

Ωk (BL,k −BL,k+1) +

(
1− e

−λsdγ̃0
ΩL

)
. (80)

We can further approximate pout,L in (80) for high SNR scenario as

pout,L ≈ λsdγ̃0
ΩL

(
λsrγ̃0
ΩL−1

+
λrdγ̃0

2(L− 1)Pr

)
. (81)

In the following, we determine an optimal power sequence P = [Ps,1, Ps,2, ..., Ps,L;Pr] for the cooperative H-
ARQ relaying protocol such that the average total transmission power for the protocol to deliver an information
packet is minimized. We assume that the relay transmitted power Pr is fixed over all retransmission rounds.
For the H-ARQ relay protocol with a targeted outage probability p0, the problem of finding optimal power
assignment per round can be formulated as

min P̄ with respect to Ps,1, Ps,2, · · · , Ps,L;Pr ≥ 0

subject to pout,L ≤ p0 (82)

where P̄ and pout,L are specified in (26) and (80), respectively. Since solving the optimization problem with the
closed-form expressions in (26) and (80) is not analytically tractable, we use the asymptotically tight approxi-
mation results of the average total transmission power and the outage probability, which are derived in (75) and
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(81), respectively. Then, the optimization problem is given by

min
Ps,1,··· ,Ps,L;Pr≥0

Ps,1 + (Ps,2 + Pr)
λsdγ̃0
Ω1

+

L∑
l=3

(Ps,l + Pr)
λsdγ̃0
Ωl−1

(
λsrγ̃0
Ωl−2

+
λrdγ̃0

2(l − 2)Pr

)
subject to

λsdγ̃0
ΩL

(
λsrγ̃0
ΩL−1

+
λrdγ̃0

2(L− 1)Pr

)
≤ p0 (83)

where Ωl =
∑l

m=1 Ps,m.
Before we solve the above optimization problem, we first show that the average total transmission power

P̄ reaches its minimum when the constraint in (83) holds with equality. If there exists a power sequence
P ∗
s,1, P

∗
s,2, · · · , P ∗

s,L, P
∗
r such that λsdγ̃0

Ω∗
L

(
λsr γ̃0
Ω∗

L−1
+ λrdγ̃0

2(L−1)P ∗
r

)
< p0 where Ω∗

l =
∑l

m=1 P
∗
s,m, and the average

total transmission power P̄ is minimized, then let us consider another power sequence
P̃s,m = P ∗

s,m, 1 ≤ m ≤ L− 1,

P̃s,L = ηP ∗
s,L,

P̃r = P ∗
r ,

where η is

η , 1

P ∗
s,L

[
λsdγ̃0
p0

(
λsrγ̃0
Ω∗
L−1

+
λrdγ̃0

2(L− 1)P ∗
r

)
− Ω∗

L−1

]
. (84)

We can see that the new power sequence P̃s,1, P̃s,2, · · · , P̃s,L, P̃r satisfies

λsdγ̃0

Ω̃L

(
λsrγ̃0

Ω̃L−1

+
λrdγ̃0

2(L− 1)P̃r

)
= p0, (85)

where Ω̃l =
∑l

m=1 P̃s,m. Since λsdγ̃0
p0

(
λsr γ̃0
Ω∗

L−1
+ λrdγ̃0

2(L−1)P ∗
r

)
< Ω∗

L, so η is upper bounded as

η <
1

P ∗
s,L

[
Ω∗
L − Ω∗

L−1

]
= 1, (86)

and the corresponding average total transmission power is

P̄ (P̃s,1, P̃s,2, · · · , P̃s,L; P̃r) = P ∗
s,1 + (P ∗

s,2 + P ∗
r )

λsdγ̃0
Ω∗
1

+

L−1∑
l=3

(P ∗
s,l + P ∗

r )
λsdγ̃0
Ω∗
l−1

(
λsrγ̃0
Ω∗
l−2

+
λrdγ̃0

2(l − 2)P ∗
r

)

+ (ηP ∗
s,L + P ∗

r )
λsdγ̃0
Ω∗
L−1

(
λsrγ̃0
Ω∗
L−2

+
λrdγ̃0

2(L− 2)P ∗
r

)
< P̄ (P ∗

s,1, P
∗
s,2, · · · , P ∗

s,L; P
∗
r ), (87)

which implies that the average total transmission power resulting from the new power sequence P̃s,1, P̃s,2, · · · , P̃s,L, P̃r

is less than that based on the power sequence P ∗
s,1, P

∗
s,2, · · · , P ∗

s,L, P
∗
r . This is contradictory to the assumption

that the power sequence P ∗
s,1, P

∗
s,2, · · · , P ∗

s,L, P
∗
r minimizes the average total transmission power P̄ . There-

fore, the minimum average total transmission power P̄ can be achieved at the boundary of the constraint (with
equality) in (83).

Next, based on the constraint in (83) with equality, we solve the optimization problem by considering a
Lagrange multiplier method. Denote Fi , λsdγ̃0

Ωi

(
λsr γ̃0
Ωi−1

+ λrdγ̃0
2(i−1)Pr

)
, then a Lagrangian objective function can

be formulated as

L (P, λ) = Ps,1 + (Ps,2 + Pr)
λsdγ̃0
Ω1

+

L∑
l=3

(Ps,l + Pr)Fl−1 + λ
[
FL − p0

]
. (88)
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Further denote Gi , λsdλsr γ̃2
0

Ω2
i−1

and Mi , λsdλrdγ̃
2
0

2(i−1)P 2
r

, then the derivatives of L (P, λ) with respect to Ps,m,

1 ≤ m ≤ L, and Pr are

∂L
∂Ps,1

= 1− (Ps,2 + Pr)
λsdγ̃0
Ω2

1
−
∑L

l=3(Ps,l + Pr)
Fl−1+Gl−1

Ωl−1
− λFL+GL

ΩL
,

∂L
∂Ps,2

= λsdγ̃0
Ω1

− (Ps,3 + Pr)
F2
Ω2

−
∑L

l=4(Ps,l + Pr)
Fl−1+Gl−1

Ωl−1
− λFL+GL

ΩL
,

∂L
∂Ps,m

= Fm−1 − (Ps,m+1 + Pr)
Fm
Ωm

−
∑L

l=m+2(Ps,l + Pr)
Fl−1+Gl−1

Ωl−1
− λFL+GL

ΩL
,

m = 3, 4, · · · , L− 2,

∂L
∂Ps,L−1

= FL−2 − (Ps,L + Pr)
FL−1

ΩL−1
− λFL+GL

ΩL
,

∂L
∂Ps,L

= FL−1 − λFL
ΩL

,

∂L
∂Pr

= λsdγ̃0
Ω1

+
∑L

l=3

[
Fl−1 − (Ps,l + Pr)

Ml−1

Ωl−1

]
− λML

ΩL
.

Based on ∂L
∂Ps,1

= 0 and ∂L
∂Ps,2

= 0, we have

∂L
∂Ps,1

− ∂L
∂Ps,2

=
1

Ω1

[
Ω1 − (Ω2 + Pr)

λsdγ̃0
Ω1

− (Ps,3 + Pr)
λsdλsrγ̃

2
0

Ω1Ω2

]
= 0,

which implies

Ps,3 =
Ω1Ω2

λsdλsrγ̃20

[
Ω1 − (Ω2 + Pr)

λsdγ̃0
Ω1

]
− Pr. (89)

Based on ∂L
∂Ps,2

= 0 and ∂L
∂Ps,3

= 0, we have

∂L
∂Ps,2

− ∂L
∂Ps,3

=
1

Ω2

[
Ω2

λsdγ̃0
Ω1

− (Ω3 + Pr)F2 − (Ps,4 + Pr)
λsdλsrγ̃

2
0

Ω2Ω3

]
= 0,

which implies

Ps,4 =
Ω2Ω3

λsdλsrγ̃20

[
Ω2

λsdγ̃0
Ω1

− (Ω3 + Pr)F2

]
− Pr. (90)

For any m = 5, 6, · · · , L, according to ∂L
∂Ps,m−2

= 0 and ∂L
∂Ps,m−1

= 0, we have

∂L
∂Ps,m−2

− ∂L
∂Ps,m−1

=
1

Ωm−2

[
Ωm−2Fm−3 − (Ωm−1 + Pr)Fm−2 − (Ps,m + Pr)

λsdλsrγ̃
2
0

Ωm−2Ωm−1

]
= 0,

which implies

Ps,m =
Ωm−2Ωm−1

λsdλsrγ̃20

[
Ωm−2Fm−3 − (Ωm−1 + Pr)Fm−2

]
− Pr. (91)

Moreover, by taking the derivative of L (P, λ) with respect to λ and setting it equal to zero, we have the
constraint as FL−p0 = 0. Furthermore, from ∂L

∂Ps,L
= 0 and ∂L

∂Pr
= 0, we have constraints as FL−1−λFL

ΩL
= 0

and λsdγ̃0
Ω1

+
∑L

l=3

[
Fl−1 − (Ps,l + Pr)

Ml−1

Ωl−1

]
− λML

ΩL
= 0, respectively. Based on these three constraints, we

come up with
λsdγ̃0
Ω1

+

L∑
l=3

[
Fl−1 − (Ps,l + Pr)

Ml−1

Ωl−1

]
=

FL−1ML

p0
. (92)

We summarize the above discussion in the following theorem which shows how to determine the optimal
transmission power sequence Ps,1, Ps,2, · · · , Ps,L and Pr.
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Theorem 3 In the cooperative H-ARQ relaying protocol, to minimize the average total transmission power, the
optimal transmission power sequence Ps,1, Ps,2, · · · , Ps,L and Pr satisfies the following

Ps,3 =
Ω1Ω2

λsdλsrγ̃20

[
Ω1 − (Ω2 + Pr)

λsdγ̃0
Ω1

]
− Pr, (93)

Ps,4 =
Ω2Ω3

λsdλsrγ̃20

[
Ω2

λsdγ̃0
Ω1

− (Ω3 + Pr)F2

]
− Pr, (94)

Ps,l =
Ωl−2Ωl−1

λsdλsrγ̃20

[
Ωl−2Fl−3 − (Ωl−1 + Pr)Fl−2

]
− Pr, l = 5, 6, · · · , L (95)

and
λsdγ̃0
Ω1

+

L∑
l=3

[
Fl−1 − (Ps,l + Pr)

Ml−1

Ωl−1

]
=

FL−1ML

p0
, (96)

where

Fi =
λsdγ̃0
Ωi

(
λsrγ̃0
Ωi−1

+
λrdγ̃0

2(i− 1)Pr

)
, Mi =

λsdλrdγ̃
2
0

2(i− 1)P 2
r

,

in which Ωi =
∑i

m=1 Ps,m, γ̃0 , γ0N0, γ0 is the target SNR, N0 is the additive white noise variance, and
1/λsd, 1/λsr and 1/λrd are the variances of the source-destination, the source-relay and the relay-destination
fading channels, respectively. �

From Theorem 3, we observe that for any given power Pr, Ps,1 and Ps,2, we can determine power Ps,3. In
general, for any l = 3, 4, · · · , L, with power Pr and Ps,1, Ps,2, · · · , Ps,l−1, we can determine power Ps,l. Thus,
for any given initial power Pr, Ps,1 and Ps,2, we can determine power Ps,l recursively for any l = 3, 4, · · · , L.
The complexity of finding the optimal power sequence is reduced to that of searching the initial power Ps,1, Ps,2

and Pr, i.e., searching over a three-variable space. We can see that in such a way, the calculation complexity
of finding the optimal power sequence for the cooperative H-ARQ relaying protocol is fixed regardless of the
maximum number of (re)transmission rounds L.

Especially, when L = 2, we can solve the equations directly and obtain closed-form results. In this case, a
Lagrangian objective function can be formulated as

L (P, λ) = Ps,1 + (Ps,2 + Pr)
λsdγ̃0
Ω1

+ λ
[
F2 − p0

]
. (97)

The derivatives of L (P, λ) with respect to Ps,1, Ps,2, Pr and λ are

∂L
∂Ps,1

= 1− (Ps,2 + Pr)
λsdγ̃0
Ω2

1
− λF2+G2

Ω2
,

∂L
∂Ps,2

= λsdγ̃0
Ω1

− λF2
Ω2

,

∂L
∂Pr

= λsdγ̃0
Ω1

− λM2
Ω2

,

∂L
∂λ = F2 − p0,

where

F2 =
λsdγ̃0
Ω2

(
λsrγ̃0
Ω1

+
λrdγ̃0
2Pr

)
, G2 =

λsdλsrγ̃
2
0

Ω2
1

, M2 =
λsdλrdγ̃

2
0

2P 2
r

.

From ∂L
∂Pr

= 0, we have

λ =
2P 2

r Ω2

λrdγ̃0Ω1
. (98)
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Based on ∂L
∂Ps,1

= 0 and ∂L
∂Ps,2

= 0, we have

∂L
∂Ps,1

− ∂L
∂Ps,2

= 1− λsdγ̃0
Ω1

− (Ps,2 + Pr)
λsdγ̃0
Ω2
1

− λ
G2

Ω2
= 0. (99)

By substituting (98) into (99), we have

2λsr

λrd
P 2
r + Ps,1Pr + Ps,1Ps,2 + P 2

s,1 −
P 3
s,1

λsdγ̃0
= 0. (100)

Based on ∂L
∂Ps,2

= 0 and ∂L
∂Pr

= 0, we have

∂L
∂Ps,2

− ∂L
∂Pr

= −λ
F2 −M2

Ω2
= 0,

which implies
2λsr

λrd
P 2
r + Ps,1Pr − Ps,1(Ps,1 + Ps,2) = 0. (101)

From (100) and (101), we have

Ps,2 = Ps,1

(
Ps,1

2λsdγ̃0
− 1

)
≈

P 2
s,1

2λsdγ̃0
, (102)

where the term Ps,1

2λsdγ̃0
in (102) is much larger than 1 at high SNR, in which 1 can be ignored. By substituting

(102) into (101), we have

Pr =
λrdPs,1

4λsr

(√
1 +

4λsrPs,1

λsdλrdγ̃0
− 1

)
≈ Ps,1

2

√
λrdPs,1

λsdλsrγ̃0
, (103)

where the term 4λsrPs,1

λsdλrdγ̃0
in (103) is much larger than 1 at high SNR, in which all 1’s can be ignored. By

substituting (102) and (103) into ∂L
∂λ = 0, we have

P 3
s,1 =

2λ2
sdλsrγ̃

3
0

p0

1 +
2√

1 +
4λsrPs,1

λsdλrdγ̃0
− 1

 ≈
2λ2

sdλsrγ̃
3
0

p0
, (104)

in which the term 2√
1+

4λsrPs,1
λsdλrdγ̃0

−1

in (104) is much smaller than 1 at high SNR, which can be ignored. Therefore,

the optimal transmission power Ps,1, Ps,2 and Pr are given by

Ps,1 ≈ γ̃0

(
2λ2

sdλsr

p0

) 1
3

, (105)

Ps,2 ≈ γ̃0

(
λsdλ

2
sr

2p20

) 1
3

, (106)

Pr ≈ γ̃0

(
λsdλrd

2p0

) 1
2

. (107)

From the above closed-form results, it is obvious that (p−1
0 )

1
3 < (p−1

0 )
1
2 < (p−1

0 )
2
3 for a small targeted outage

probability p0. Thus, we may expect that Ps,1 < Pr < Ps,2. Under the assumption that 1
λsd

= 1
λsr

= 1
λrd

= 1

and N0 = 1, if we set γ0 = 10 dB and p0 = 10−3, this expectation can be verified in Fig. 5, which shows that
Ps,1 < Pr < Ps,2.
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Table 1: Comparison of the optimal power sequence by exhaustive search (82) and closed-form
results (105)–(107) with γ0 = 10 dB, p0 = 10−3, L = 2 and dB scale.

Method Ps,1 Ps,2 Pr

Exhaustive search (82) 21.16 29.04 23.42

(105)–(107) 21.00 29.00 23.50

3.1.6 Numerical and Simulation Results

In this section, we provide some numerical and simulation results to illustrate our theoretical development on
the optimal power assignment strategy. In all studies, we assume that the variances of the channels hsd, hsr and
hrd are 1

λsd
= 1

λsr
= 1

λrd
= 1 and the noise variance is N0 = 1.

For comparison purposes, we derive the average total transmission power for the equal power assignment
strategy. For a targeted outage probability p0, the equal power assignment approach also follows the constraint
in (83) with equality as follows

λsdγ̃0
ΩL

(
λsrγ̃0
ΩL−1

+
λrdγ̃0

2(L− 1)Pr

)
= p0. (108)

Under the equal power assignment, the source and relay transmission powers are fixed over all (re)transmission
rounds, i.e., Ps,l = Pr = P for 1 ≤ l ≤ L. Thus, the equal power assignment is

P = γ̃0

√
λsd(2λsr + λrd)

2L(L− 1)p0
. (109)

By substituting (109) into (75), the approximation of the corresponding average total transmission power is
given by

P̄equ(L) ≈ P + 2λsdγ̃0 +
γ̃20
P

L∑
l=3

λsd(2λsr + λrd)

(l − 1)(l − 2)

= γ̃0

[√
λsd(2λsr + λrd)

2L(L− 1)p0

{
1 + 2L(L− 2)p0

}
+ 2λsd

]
. (110)

In Figs. 2, 3 and 4, we plot the average total transmission power of the cooperative H-ARQ relaying protocol
by comparing the approximation result in (75), the exact closed-form result in (26) and the simulation result
for the cases of L = 2, 3 and 4, respectively. In this example, we assume that the source transmission power
is fixed over all (re)transmission rounds and equal to the relay transmission power, i.e., Ps,l = Pr = P for
1 ≤ l ≤ L. The targeted SNR is set at γ0 = 10 dB. Apparently, we can see that the closed-form result of the
average total transmission power matches exactly with the simulation curve in each figure. We also observe
that the approximation of the average total transmission power is loose at low SNR and tight at high SNR. The
approximation curve is almost indistinguishable from the exact closed-form result and the simulation curve for
SNR above 15 dB in each figure.

In Figs. 5–7, we compare the optimal transmission power sequence from Theorem 3 and the exhaustive
search result based on the original optimization problem in (82) (without approximation). Note that in Fig. 5
(L = 2), we plot the optimal power sequence obtained from (105)–(107) instead of Theorem 3. In these three
figures, we assumed that the targeted SNR is γ0 = 10 dB and the required outage performance is p0 = 10−3.
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Figure 2: Average total power consumption per information packet with Ps,l = Pr = P , 1 ≤ l ≤
2, γ0 = 10 dB, L = 2.
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Figure 3: Average total power consumption per information packet with Ps,l = Pr = P , 1 ≤ l ≤
3, γ0 = 10 dB, L = 3.
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Figure 4: Average total power consumption per information packet with Ps,l = Pr = P , 1 ≤ l ≤
4, γ0 = 10 dB, L = 4.

The maximum number of (re)transmission rounds is L = 2 in Fig. 5, L = 3 in Fig. 6 and L = 4 in Fig. 7. We
can see that the optimal transmission power values resulted from Theorem 3 (solid line with ‘∗’) match well
with the exhaustive search result from the original optimization problem (solid line with ‘◦’). Moreover, we
present the comparison of the two solid lines numerically in Tables 1, 2 and 3 (with dB scale). When L = 2,
Table 1 shows that the optimal power sequence from the closed-form results (105)–(107) is very close to the
exhaustive search result. For comparison, we also include in the figures the transmission power level of the
equal power assignment scheme (dashed line with ‘⋄’). We observe that the optimal power assignment strategy
assigns less transmission power to the source in the first few (re)transmission rounds and significantly large
transmission power to the source at the last (L-th) round compared to the equal power assignment strategy. It
provides some insightful information on how much power should be assigned to the source at each round for
saving the average total power cost.

In Figs. 8, 9 and 10, we plot the average total transmission power for both the optimal power assignment
scheme and the equal power assignment scheme, with different targeted SNR γ0 (from 0 dB to 25 dB). The

Table 2: Comparison of the optimal power sequence by exhaustive search (82) and Theorem 3
with γ0 = 10 dB, p0 = 10−3, L = 3 and dB scale.

Method Ps,1 Ps,2 Ps,3 Pr

Exhaustive search (82) 16.53 19.98 29.65 17.96

Theorem 3 17.20 20.13 29.58 17.63
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Table 3: Comparison of the optimal power sequence by exhaustive search (82) and Theorem 3
with γ0 = 10 dB, p0 = 10−3, L = 4 and dB scale.

Method Ps,1 Ps,2 Ps,3 Ps,4 Pr

Exhaustive search (82) 14.39 14.91 21.85 28.44 15.62

Theorem 3 15.54 15.48 21.65 28.30 15.05
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Figure 5: Transmission power sequence of the optimal and equal power assignment strategies with
γ0 = 10 dB, p0 = 10−3, L = 2.

required outage performance is set at p0 = 10−3. When L = 2, from Fig. 8 we observe that the optimal power
assignment saves about 1.5 dB in average total transmission power compared to the equal power assignment.
When L = 3 and 4, Figs. 9 and 10 show that the optimal power assignment scheme outperforms the equal
power assignment scheme with a performance improvement of about 2.6 dB. Moreover, it is interesting to
observe that in each figure, the performance gain of the optimal power assignment scheme is almost constant
for different targeted SNR γ0 (from 0 dB to 25 dB).

We also compare the average total transmission power required in the two power assignment strategies with
different targeted outage probability values. We assume the required SNR is γ0 = 10 dB. Figs. 11, 12 and 13
present comparison results for the cases of L = 2, 3 and 4, respectively. From the three figures, we can see that
for an outage performance of p0 = 10−5, the power savings of the optimal power assignment compared to the
equal power assignment are 5 dB when L = 2, 10 dB when L = 3, and 11 dB when L = 4. We also observe
that the lower the required outage probability, the more performance gain of the optimal power assignment
strategy compared to the equal power assignment strategy.
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Figure 6: Transmission power sequence of the optimal and equal power assignment strategies with
γ0 = 10 dB, p0 = 10−3, L = 3.
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Figure 7: Transmission power sequence of the optimal and equal power assignment strategies with
γ0 = 10 dB, p0 = 10−3, L = 4.
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Figure 8: Average total transmission power of the optimal and equal power assignment strategies
with p0 = 10−3, L = 2.
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Figure 9: Average total transmission power of the optimal and equal power assignment strategies
with p0 = 10−3, L = 3.
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Figure 10: Average total transmission power of the optimal and equal power assignment strategies
with p0 = 10−3, L = 4.
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Figure 11: Average total transmission power of the optimal and equal power assignment strategies
with γ0 = 10 dB, L = 2.
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Figure 12: Average total transmission power of the optimal and equal power assignment strategies
with γ0 = 10 dB, L = 3.
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Figure 13: Average total transmission power of the optimal and equal power assignment strategies
with γ0 = 10 dB, L = 4.
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Moreover, we show in Figs. 8–13 the average total transmission power from exhaustive search result based
on the original optimization problem in (82). When L = 2, we can see from Fig. 8 that the average total
transmission power from closed-form results (105)–(107) matches tightly with that from exhaustive search
result. In Fig. 11, we also observe that the solid line with ‘∗’ obtained from (105)–(107) is tight below the
targeted outage probability of 10−3. When L = 3 (Figs. 9 and 12) and L = 4 (Figs. 10 and 13), we can
see that the average total transmission power from Theorem 3 is close to that from exhaustive search result, in
which the gap between the two solid lines results from the fact that the solid line with ‘∗’ is originated from the
approximation result in (75) and the solid line with ‘◦’ is obtained from the exact closed-form result in (26).

3.2 Cooperative Communication Protocol Designs Based on Optimum Power and Time Allo-
cation

In this subsection, we design and optimize cooperative communication protocols by exploring all possible vari-
ations in time and power domains. First, we introduce a general system model for cooperative communication
protocol design with flexibility in time/power allocation and arbitrary re-encoding methods. Second, we study
the ideal cooperative protocol and determine the corresponding optimum time and power allocations analyti-
cally. Third, we design the practical cooperative communication protocol based on linear mapping and optimize
the linear mapping function to minimize the outage probability of the protocol. Fourth, extensive numerical and
simulation studies are presented to verify our theoretical development. We use the following notation through-
out this subsection. Bold letters in uppercase and lowercase denote matrices and vectors, respectively. (·)H,
det(·) and Tr(·) represent Hermitian transpose, determinant and trace operators, respectively. IL is an L × L
identity matrix, and diag(λ1, . . . , λL) is an L× L diagonal matrix with diagonal elements λ1, . . . , λL.

3.2.1 System Model

We consider a cooperative wireless network that consists of one source, one destination and one relay using DF
relaying protocol. The cooperative strategy is described as followed with two phases. In Phase I, the source
transmits information signal to the destination, and the signal is also received by the relay as well. In Phase II, if
the relay is able to fully decode the information signal, it helps forwarding the information to the destination via
certain re-encoding/transform methods. Throughout this paper, we consider narrowband transmissions in the
wireless network in which channel between any two nodes is subject to the effects of frequency nonselective
Rayleigh fading and additive white Gaussian noise (AWGN). We assume that the channel state information
(CSI) is available only at the receivers, not at the transmitters. Nodes in the network work in a half-duplex
mode where they cannot transmit and receive simultaneously in a same frequency band.

More specifically, in Phase I, the source broadcasts its information signal xs(t) to both the destination and
the relay during time interval (0, T1]. The received signals ys,d(t) and ys,r(t) at the destination and at the relay
can be modeled as

ys,d(t) =
√

P1 hs,d xs(t) + ns,d(t), 0 < t ≤ T1, (111)

ys,r(t) =
√
P1 hs,r xs(t) + ns,r(t), 0 < t ≤ T1, (112)

where P1 is the transmission power, xs(t) is normalized with power 1, and ns,d(t) and ns,r(t) are corresponding
received noise at the destination and the relay. In (111) and (112), hs,d and hs,r are the channel coefficients from
the source to the destination and the relay, respectively. In Phase II, if the relay fully decodes the information
from the source, then the relay re-encodes the information and forwards it to the destination with power P2,
otherwise the relay remains idle. We denote the time duration of Phase II as T2. Then, the received signal
yr,d(t) at the destination in Phase II can be modeled as

yr,d(t) =

√
P̃2 hr,d xr(t) + nr,d(t), T1 < t ≤ T1 + T2, (113)

where P̃2 = P2 if the relay correctly decodes the information signal xs(t), otherwise P̃2 = 0, hr,d is the channel
coefficient from the relay to the destination, and nr,d(t) is received noise at the destination in Phase II. In (113),
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xr(t)
△
= M(xs(t)) is a re-encoded version of the original information signal xs(t) and it is normalized with

average power 1. We note that theoretically arbitrary re-encoding function M(·) may be considered in the
protocol design.

We assume that the channel coefficients hs,d, hs,r and hr,d are modeled as zero-mean complex Gaussian
random variables with variances δ2s,d, δ2s,r and δ2r,d, respectively. The noise terms ns,d(t), ns,r(t) and nr,d(t)
are modeled as zero-mean AWGN with variance N0. We denote the total time duration of each transmission
period as T

△
= T1 + T2 and assume that the fading channels are quasi-static within each transmission period.

We denote the ratio of the time allocation in Phase I over the whole period as α
△
= T1/T ∈ (0, 1). If the average

transmission power of the protocol in each transmission period is P , then the source and relay transmission
powers P1 and P2 should satisfy the constraint

P1T1 + P2T2 = PT, (114)

or equivalently αP1+(1−α)P2 = P . For convenience, we further denote β as the ratio of the energy consumed

in Phase I over the total energy consumption in each transmission period, i.e., β
△
= P1T1

PT , so we have β = αP1
P .

We note that the system model specified above for cooperative relaying protocol designs has two variable
domains to optimize: the power domain of allocating P1 and P2 and the time domain of allocating T1 and T2.
With given power budget P , we intend to optimize the power variables and the time variables such that the out-
age probability of the cooperative relaying protocol is minimized. First, we study an ideal cooperative relaying
protocol where there is no constraint on the re-encoding function M(·) and time allocation. The corresponding
theoretical analysis will serve as guideline and benchmark in following practical cooperative communication
protocol design. Then, with more realistic consideration for implementation, we propose a practical cooperative
relaying protocol by considering linear mapping technique as the re-encoding function M(·), and interestingly,
the performance of the proposed practical protocol design is very close to the performance benchmark of the
ideal cooperative protocol.

3.2.2 Ideal Cooperative Communication Protocol

In this section, we focus on joint optimization of power allocation and time allocation in an ideal cooperative
protocol where the system can use arbitrary re-encoding function M(·) at the relay and adjust time alloca-
tion arbitrarily between Phases I and II. It has been shown that the relay and the source can use independent
codebooks to achieve maximum rate in cooperative communication protocols [46]. In the ideal cooperative
protocol, we assume that the source and the relay perfectly cooperate by using two independent codebooks.
We also assume that the system can arbitrarily allocate time duration to both phases, i.e., T1 and T2 can be
arbitrary positive numbers (T1+T2 = T ). In the following, we first calculate the outage probability of the ideal
cooperative protocol. Then, we obtain optimum power and time allocation to minimize the outage probability
of the ideal cooperative protocol. For any give time allocation α ∈ (0, 1), we determine the optimum power
allocation at the source and the relay analytically with closed-form expression. Finally, we show that in order
to minimize the outage probability of the protocol, one should allocate more energy and time to Phase I than
that to Phase II.

First, we would like to derive the outage probability of the ideal cooperative relaying protocol. Throughout
the paper, the outage probability is defined as the probability that the maximum mutual information I of the
transceiver is smaller than a predetermined target transmission rate RT . If I > RT , we assume that the receiver
can decode the message correctly with negligible error probability.

In Phase I, with independently and identically distributed (i.i.d.) circularly symmetric complex Gaussian
input signals, the maximum mutual information between the source and the destination is given by

Is,d = α log2

(
1 +

P1 |hs,d|2

N0

)
, (115)

in which the time allocation ratio α shows the fact that Phase I occupies time duration T1 in each transmission
period (0, T ]. Since hs,d ∼ CN (0, δ2s,d), then |hs,d|2 is an exponential random variable with parameter λs,d =
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1/δ2s,d. Thus, the probability that the destination decodes incorrectly in Phase I can be calculated as

Pr [Is,d < RT ] = 1− exp

{
− N0

P1δ2s,d

(
2

RT
α − 1

)}
. (116)

Similarly, the maximum mutual information Is,r between the source and the relay in Phase I is

Is,r = α log2

(
1 +

P1 |hs,r|2

N0

)
, (117)

and the outage probability that the relay fails to decode the message in Phase I is

Pr [Is,r < RT ] = 1− exp

{
− N0

P1δ2s,r

(
2

RT
α − 1

)}
. (118)

If the relay fully decodes the message from the source, then the relay forwards the message to the destination
by using an independent codebook. With two independent codebooks at the source and relay, the channels of
source-destination and relay-destination can be viewed as a pair of parallel channels, thus the joint maximum
mutual information from the source to the destination in the two phases is given by

Ijoint = α log2

(
1 +

P1 |hs,d|2

N0

)
+ (1− α) log2

(
1 +

P2 |hr,d|2

N0

)
. (119)

Since hr,d ∼ CN (0, δ2r,d), |hr,d|
2 is an exponential random variable with parameter λr,d = 1/δ2r,d. The proba-

bility density function (pdf) of the random variable |hr,d|2 is f|hr,d|2(zr,d) =
1

δ2
r,d

exp

{
− zr,d

δ2
r,d

}
with zr,d ≥ 0.

Similarly, the pdf of the random variable |hs,d|2 is given by f|hs,d|2(zs,d) = 1
δ2
s,d

exp

{
− zs,d

δ2
s,d

}
with zs,d ≥ 0.

Then, with the relay signal, the probability that the destination decodes incorrectly is given by

Pr [Ijoint < RT ] =

∫ N0
P1

(2
RT
α −1)

0
f|hs,d|2(zs,d)

(∫ N0
P2

(
2
RT−α log2(1+P1zs,d/N0)

1−α −1
)

0
f|hr,d|2(zr,d) dzr,d

)
dzs,d

=

∫ N0
P1

(2
RT
α −1)

0

(
1− exp

{
− N0

P2δ2r,d

(
2

RT−α log2(1+P1zs,d/N0)

1−α − 1
)}) exp

{
− zs,d

δ2s,d

}
δ2s,d

dzs,d

(120)

Note that the outage events of the cooperative relaying protocol have two possibilities: i) both the destination
and the relay fail to decode the message in phase I; and ii) the destination fails to decode the message jointly
in Phase II even when the relay fully decodes the message and helps forwarding the message to the destination.
Therefore, the overall outage probability Pout of the ideal cooperative protocol is given by

Pout =Pr [Is,d < RT ]Pr [Is,r < RT ] + (1− Pr [Is,r < RT ])Pr [Ijoint < RT ]

=

(
1− exp

{
− N0

P1δ2s,d
(2

RT
α − 1)

})(
1− exp

{
− N0

P1δ2s,r
(2

RT
α − 1)

})
+ exp

{
− N0

P1δ2s,r
(2

RT
α − 1)

}

×
∫ N0

P1
(2

RT
α −1)

0

(
1− exp

{
− N0

P2δ2r,d

(
2

RT−α log2(1+P1zs,d/N0)

1−α − 1

)})
1

δ2s,d
exp

{
−
zs,d
δ2s,d

}
dzs,d.

(121)
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3.2.3 Optimum Power and Time Allocations

In this subsection, we would like to minimize the outage probability in (121) to determine optimum power and
time allocations for the ideal cooperative relaying protocol. However, the closed-form expression in (121) is
not tractable for analytical purpose. Therefore, in the following, we first derive an approximation of the outage
probability (121) which is asymptotically tight, then we determine the optimum time and power allocations
based on the asymptotically tight approximation of the outage probability.

We would like to use the first-order Taylor series approximation, i.e. exp(x) ≈ 1 + x for x close to 0, to
simplify the two terms Pr [Is,d < RT ] and Pr [Is,r < RT ] in (121). With high SNR where P1/N0 is large, we
have

Pr [Is,d < RT ] ≈
N0(2

RT
α − 1)

P1δ2s,d
, (122)

Pr [Is,r < RT ] ≈
N0(2

RT
α − 1)

P1δ2s,r
. (123)

Thus, the product of Pr [Is,d < RT ] and Pr [Is,r < RT ] can be approximated as

Pr [Is,d < RT ] · Pr [Is,r < RT ] ≈
N 2

0

P 2
1 δ

2
s,d

A(α), (124)

where

A(α) =
(2

RT
α − 1)2

δ2s,r
. (125)

Note that A(α) > 0 and its first-order differential is continuous for any α ∈ (0, 1). Furthermore, we can see
in (123) that the term Pr [Is,r < RT ] << 1 in the high SNR region, so we have 1− Pr [Is,r < RT ] ≈ 1 with
large P1/N0.

In order to obtain an asymptotically tight approximation for the term Pr [Ijoint < RT ], we need the following
lemma that was developed in [40].

Lemma 4 [40] Assume that us1 and vs2 are two independent scalar random variables. If their cumulative
distribution functions (CDF) satisfy the following properties:

lim
s1→∞

s1 · Pr[us1 < R] = a · f(R),

lim
s2→∞

s2 · Pr[vs2 < R] = b · g(R),

where a and b are constants, f(R) and g(R) are monotonically increasing functions, and the derivative of
g(R), denoted as g′(R), is integrable, then the CDF of the sum of the two independent random variables has
the following property:

lim
s1,s2→∞

s1s2 · Pr[us1 + vs2 < R] = ab ·
∫ R

0
f(r)g′(R− r)dr. (126)

To use Lemma 4, we observe that Ijoint in (119) includes two independent random variables which can be

written as Ijoint = us1 + us2 , where us1 = α log2

(
1 +

P1|hs,d|2
N0

)
and us2 = (1 − α) log2

(
1 +

P2|hr,d|2
N0

)
.

Let s1 = P1
N0

and s2 =
P2
N0

, and since |hs,d|2 and |hr,d|2 are exponential random variables with parameter 1/δ2s,d
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and 1/δ2r,d, so we have

lim
s1→∞

s1 · Pr[us1 < RT ] = lim
s1→∞

s1 · Pr

[
|hs,d|2 <

2
RT
α − 1

s1

]
=

1

δ2s,d
(2

RT
α − 1)︸ ︷︷ ︸

△
=f(RT )

, (127)

lim
s2→∞

s2 · Pr[us2 < RT ] = lim
s2→∞

s2 · Pr

|hr,d|2 < 2
RT
1−α − 1

s2

 =
1

δ2r,d
(2

RT
1−α − 1)︸ ︷︷ ︸
△
=g(RT )

. (128)

We can see that in (127) and (128), both f(RT ) and g(RT ) are monotonically increasing functions, and further-

more we have g′(RT ) =
ln 2
1−α2

RT
1−α . By applying Lemma 4, we obtain an approximation of Pr [Ijoint < RT ] at

the high SNR region as

Pr [Ijoint < RT ] ≈
N 2

0

P1P2δ2s,dδ
2
r,d

∫ RT

0
f(r)g′(RT − r)dr

=
N 2

0

P1P2δ2s,dδ
2
r,d

∫ RT

0
(2

r
α − 1)

ln 2

1− α
2

RT−r

1−α dr

=
N 2

0

P1P2δ2s,d
· ln 2

δ2r,d(1− α)
2

RT
1−α

∫ RT

0

[
2

r(1−2α)
α(1−α) − 2

r
α−1

]
dr︸ ︷︷ ︸

△
=B(α)

. (129)

In (129), we observe that B(α) > 0 and its first-order differential is continuous for any α ∈ (0, 1). To further
simplify (129), we calculate the integral in B(α) by considering two cases: α = 1

2 and α ̸= 1
2 . When α = 1

2 ,
B(α) can be derived as

B(α) =
2 ln 2

δ2r,d
22RT

∫ RT

0

[
1− 2−2r

]
dr =

1

δ2r,d
(2RT ln 2 · 22RT − 22RT + 1). (130)

When α ̸= 1
2 , since

∫ RT

0 2crdr = 1
c ln 2

[
2cRT − 1

]
for any constant c > 0, we have

B(α) =
ln 2

δ2r,d(1− α)
2

RT
1−α

[∫ RT

0
2

r(1−2α)
α(1−α) dr −

∫ RT

0
2

r
α−1dr

]
=

ln 2

δ2r,d(1− α)
2

RT
1−α

[
α(1− α)

(1− 2α) ln 2

(
2

RT (1−2α)

α(1−α) − 1

)
− α− 1

ln 2

(
2

RT
α−1 − 1

)]
=

1

δ2r,d

(
α

1− 2α
2

RT
α +

α− 1

1− 2α
2

RT
1−α + 1

)
. (131)

Therefore, B(α) in (129) can be given explicitly as

B(α) =


1

δ2
r,d

(2RT ln 2 · 22RT − 22RT + 1), α = 1
2 ;

1
δ2
r,d

(
α

1−2α2
RT
α + α−1

1−2α2
RT
1−α + 1

)
, otherwise.

(132)

We summarize the above discussion on the approximation of the outage probability in the following theorem.

Theorem 4 In the ideal cooperative protocol, the outage probability can be approximated as

Pout ≈ P̃out
△
=

N 2
0 A(α)

δ2s,dP
2
1

+
N 2

0 B(α)

δ2s,dP1P2
, (133)

where A(α) and B(α) are specified in (125) and (132), respectively, and the approximation is asymptotically
tight at high SNR.
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Figure 14: Comparison of the exact and approximation of the outage probability in three cases:
{δ2s,d, δ2s,r, δ2r,d} = {1, 1, 1}, {δ2s,d, δ2s,r, δ2r,d} = {1, 10, 1} and {δ2s,d, δ2s,r, δ2r,d} = {1, 1, 10}. We assume that
α = 1

2 , RT = 2, N0 = 1, and P1 = P2 = P .

In Fig. 14, we compare the exact value of the outage probability which was calculated based on (121) and the
asymptotic approximation of the outage probability in (133) in three scenarios with different channel variances:
(i) {δ2s,d, δ2s,r, δ2r,d} = {1, 1, 1}; (ii) {δ2s,d, δ2s,r, δ2r,d} = {1, 10, 1}; and (iii) {δ2s,d, δ2s,r, δ2r,d} = {1, 1, 10}. In
the comparison, we assume that α = 1

2 , RT = 2, N0 = 1, and P1 = P2 = P . From the figure, we can see
that the approximation of the outage probability is tight at reasonable high SNR for various channel conditions.
The curve of the outage probability approximation merges with the curve of the exact calculation at an outage
probability of 10−2 in each case.

Next, we would like to jointly optimize power and time allocations for the ideal cooperative protocol based
on the asymptotically tight approximation of the outage probability developed in Theorem 4. Note that the time
allocation ratio α = T1/T may take any number in the range of (0, 1), while the power parameters P1 and P2

should satisfy the power constraint in (114), i.e. αP1 + (1 − α)P2 = P . The problem of optimizing time and
power can be specified as follows:

min
α,P1,P2

P̃out(α, P1, P2)
△
=

N 2
0 A(α)

δ2s,dP
2
1

+
N 2

0 B(α)

δ2s,dP1P2
(134)

s.t. αP1 + (1− α)P2 = P,

0 < α < 1, P1 > 0, P2 > 0.

We found that for any given time allocation ratio α ∈ (0, 1), we are able to express the corresponding
optimum powers P1 and P2 in terms of the time allocation ratio α with closed-form expressions, which are
denoted as P ∗

1 (α) and P ∗
2 (α), respectively. Moreover, we found that for any time allocation ratio α ∈ (0, 1),

the protocol should allocate more energy to Phase I than that to Phase II (i.e. β =
αP ∗

1 (α)
P > 1

2 ) in order to
minimize the outage probability of the protocol. The results are summarized in the following theorem.
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Theorem 5 In the ideal cooperative protocol, for any given time allocation ratio α ∈ (0, 1), the corresponding
optimum powers P ∗

1 (α) and P ∗
2 (α) are given by:

P ∗
1 (α) =

1

α
·
1 +

√
1 + 8[αA(α)]/[(1− α)B(α)]

3 +
√

1 + 8[αA(α)]/[(1− α)B(α)]
P, (135)

P ∗
2 (α) =

1

1− α
· 2

3 +
√

1 + 8[αA(α)]/[(1− α)B(α)]
P, (136)

where A(α) and B(α) are specified in (125) and (132), respectively. Moreover, the resulting energy allocation
ratio β =

αP ∗
1 (α)
P is strictly larger than 1

2 , which means that, the protocol should allocate more energy to Phase
I than that to Phase II in order to minimize the outage probability.

Proof: For simplicity, in this proof we drop the parameter α in A(α) and B(α), and denote them as A
and B, respectively. Based on the power constraint αP1 + (1 − α)P2 = P , the relay transmission power P2

can be written as

P2 =
P − αP1

1− α
. (137)

Since P2 > 0, (137) implies that αP1 < P . Therefore, for any given time allocation ratio α ∈ (0, 1), the
problem (134) can be reduced as

min
P1

P̃out(P1) =
N 2

0 A

δ2s,dP
2
1

+
N 2

0 (1− α)B

δ2s,dP1(P − αP1)
(138)

s.t. 0 < αP1 < P.

To find the optimal power P1 in the problem (138), we proceed in two steps.
First, by taking derivative of the target function P̃out(P1) in terms of P1, we have

∂P̃out(P1)

∂P1
=

N 2
0

δ2s,d

−2A(P − αP1)
2 − (1− α)B(P − 2αP1)P1

P 3
1 (P − αP1)2

. (139)

Let ∂P̃out(P1)
∂P1

= 0, we have

−2A(P − αP1)
2 − (1− α)B(P − 2αP1)P1 = 0. (140)

By solving the above equation, we have two possible solutions as follows:

P ∗
1,± =

[4αA− (1− α)B]±
√

8α(1− α)AB + (1− α)2B2

4α[αA− (1− α)B]
P. (141)

Second, for the two possible solutions, we would like to show that only the solution P ∗
1,− can satisfy the

constraint in (138). We detail the discussion in two scenarios:
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1) When αA > (1− α)B, in this case the denominators of P ∗
1,− and P ∗

1,+ are positive. We have

P ∗
1,− : αP ∗

1,− =
[4αA− (1− α)B]−

√
8α(1− α)AB + (1− α)2B2

4[αA− (1− α)B]
P

>
[4αA− (1− α)B]−

√
4α2A2 + 4α(1− α)AB + (1− α)2B2

4[αA− (1− α)B]
P

>
[4αA− (1− α)B]−

√
[2αA+ (1− α)B]2

4[αA− (1− α)B]
P =

P

2
,

αP ∗
1,− <

[4αA− (1− α)B]−
√
9(1− α)2B2

4[αA− (1− α)B]
P = P ;

P ∗
1,+ : αP ∗

1,+ =
[4αA− (1− α)B] +

√
8α(1− α)AB + (1− α)2B2

4[αA− (1− α)B]
P

>
[4αA− (1− α)B]−

√
9(1− α)2B2

4[αA− (1− α)B]
P > P.

We can see that the solution P ∗
1,+ does not satisfy the power constraint and only P ∗

1,− satisfies the power

constraint in this case. Moreover, the corresponding energy allocation ratio β =
αP ∗

1,−
P is within (12 , 1).

2) When αA < (1 − α)B, in this case the denominators of P ∗
1,− and P ∗

1,+ in (141) are negative. For
convenience, we multiply both their denominators and numerators by −1, then we have

P ∗
1,− : αP ∗

1,− =
−[4αA− (1− α)B] +

√
8α(1− α)AB + (1− α)2B2

−4[αA− (1− α)B]
P

>
−[4αA− (1− α)B] +

√
4α2A2 + 4α(1− α)AB + (1− α)2B2

−4[αA− (1− α)B]
P

>
−[4αA− (1− α)B] +

√
[2αA+ (1− α)B]2

−4[αA− (1− α)B]
P =

P

2
,

αP ∗
1,− <

−[4αA− (1− α)B] +
√

9(1− α)2B2

−4[αA− (1− α)B]
P = P ;

P ∗
1,+ : αP ∗

1,+ =
−[4αA− (1− α)B]−

√
8α(1− α)AB + (1− α)2B2

−4[αA− (1− α)B]
P

<
−[4αA− (1− α)B]− (1− α)B

−4[αA− (1− α)B]
P < 0.

We can see that the solution P ∗
1,− is the only feasible solution satisfying the power constraint in (138),

and the corresponding energy allocation ratio β is within the interval (12 , 1).

The above discussion shows that P ∗
1,− is the only solution that satisfies the power constraint and minimize the

outage probability. The resulting energy allocation ratio β is always strictly larger than 1
2 .

We may rewrite the optimum power P ∗
1,− as

P ∗
1,− =

1 +
√

1 + 8(αA)/[(1− α)B]

3 +
√

1 + 8(αA)/[(1− α)B]

P

α
. (142)

Note that A and B are shorthands of A(α) and B(α), respectively. For completeness, for any given time
allocation ratio α ∈ (0, 1), the optimum source transmission power P ∗

1 (α) is given by

P ∗
1 (α) =

1 +
√

1 + 8[αA(α)]/[(1− α)B(α)]

3 +
√

1 + 8[αA(α)]/[(1− α)B(α)]

P

α
. (143)
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Based on (137), the corresponding optimum relay transmission power P ∗
2 (α) is given by

P ∗
2 (α) =

2

3 +
√

1 + 8[αA(α)]/[(1− α)B(α)]

P

1− α
. (144)

Therefore, we prove Theorem 5 completely. �
Based on Theorem 5, we substitute the optimum power solutions P ∗

1 (α) and P ∗
2 (α) into the optimization

problem (134) to find the optimum time allocation ratio, i.e.

min
α

P̃out(α)
△
=

N 2
0 A(α)

δ2s,dP
∗
1 (α)

2
+

N 2
0 B(α)

δ2s,dP
∗
1 (α)P

∗
2 (α)

(145)

s.t. 0 < α < 1.

We can see that the optimization in (145) has only a single variable α, and we can apply numerical search of
the single variable α over the interval (0, 1) to obtain the optimum time allocation ratio α∗ that minimizes the
asymptotic outage probability P̃out. With the optimum time allocation ratio α∗, based on Theorem 5 we can
get the corresponding optimum source transmission power P ∗

1 (α
∗) and the optimum relay transmission power

P ∗
2 (α

∗). Let us denote (α∗, P ∗
1 (α

∗), P ∗
2 (α

∗)) as the solution of optimum power and time allocation for the
ideal cooperative protocol. We have the following result regarding the optimum time allocation α∗.

Theorem 6 In the ideal cooperative protocol, the optimum time allocation ratio α∗ is strictly larger than 1
2 ,

i.e. α∗ ∈ (12 , 1), which means that the protocol should allocate more time to Phase I than to Phase II in order
to minimize the outage probability of the protocol.

Proof: We would like to prove the result by contradiction. If there exists an optimum solution (α∗, P ∗
1 , P

∗
2 )

with α∗ ≤ 1
2 that achieves the minimum outage probability P̃∗

out in the problem (134), we will find another
solution that results in smaller outage probability to contradict the assumption.

With the assumption of the optimum solution (α∗, P ∗
1 , P

∗
2 ) with α∗ ≤ 1

2 , the resulting minimum outage
probability P̃∗

out can be expressed as

P̃∗
out = P̃out(α

∗, P ∗
1 , P

∗
2 ) =

N 2
0 A(α∗)

δ2s,d(P
∗
1 )

2
+

N 2
0 B(α∗)

δ2s,dP
∗
1P

∗
2

. (146)

Let us consider a new family of resource allocation strategy (α̂, P̂1, P̂2) = (τα∗,
P ∗
1
τ ,

(1−α∗)P ∗
2

1−τα∗ ) for 0 < τ < 1
α∗ .

We can check that the new resource allocation strategy (α̂, P̂1, P̂2) satisfies the power constraint in (134).
Especially when τ = 1, the new resource allocation solution is reduced to the optimum solution (α∗, P ∗

1 , P
∗
2 ).

With the new resource allocation strategy, the resulting outage probability is

C(τ)
△
= P̃out(α̂, P̂1, P̂2) =

N 2
0 (τα

∗)2A(τα∗)

δ2s,d(P
∗
1α

∗)2
+

N 2
0 τα

∗(1− τα∗)B(τα∗)

δ2s,dP
∗
1P

∗
2α

∗(1− α∗)
. (147)

Since ln 2
α

∫ RT

0 2
v
αdv = 2

RT
α − 1, we can rewrite the functions A(α) and B(α), defined in (125) and (129)

respectively, as follows:

A(α) =
(ln 2)2

δ2s,rα
2

∫ RT

0

∫ RT

0
2

v
α 2

r
α dvdr, (148)

B(α) =
(ln 2)2

δ2r,dα(1− α)

∫ RT

0

∫ RT−r

0
2

v
α 2

r
1−αdvdr. (149)

Thus, C(τ) can be written as

C(τ) = c1

∫ RT

0

∫ RT

0
2

v
τα∗ 2

r
τα∗ dvdr + c2

∫ RT

0

∫ RT−r

0
2

v
τα∗ 2

r
1−τα∗ dvdr, (150)
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where c1 =
N 2

0 (ln 2)2

δ2
s,dδ

2
s,r(P

∗
1 α

∗)2
and c2 =

N 2
0 (ln 2)2

δ2
s,dδ

2
r,dP

∗
1 P

∗
2 α

∗(1−α∗)
are positive constants.

In the following, we would like to show that the differential of the function C(τ) at τ = 1 is negative, i.e.,
∂C(τ)
∂τ

∣∣
τ=1

< 0. By taking derivative over the function C(τ), we have

∂C(τ)

∂τ

∣∣∣∣
τ=1

=c1 ln 2

∫ RT

0

∫ RT

0

(
−v + r

α∗ 2
v+r
α∗

)
dvdr

+c2α
∗ ln 2

∫ RT

0

∫ RT−r

0
2

v
α∗ 2

r
1−α∗

(
− v

(α∗)2
+

r

(1− α∗)2

)
dvdr. (151)

We can see that in (151), the first term is strictly less than 0. Next, we would like to show that the second
term in (151) is non-positive. We denote the integrand as b(v, r;α∗) = 2

v
α∗ 2

r
1−α∗

(
− v

(α∗)2 + r
(1−α∗)2

)
and the

corresponding integration domain as ∆ = {(v, r) ∈ R2
+ : v + r < RT }, then we can rewrite the second term

of (151) as c2α∗ ln 2
∫∫

∆ b(v, r;α∗)dvdr. The symmetric property of the integration domain ∆ implies that if
(v, r) ∈ ∆, then (r, v) ∈ ∆ as well. Thus, the second term of (151) can be given by

c2α
∗ ln 2

∫∫
∆
b(v, r;α∗)dvdr =

c2α
∗ ln 2

2

∫∫
∆
[b(v, r;α∗) + b(r, v;α∗)]dvdr. (152)

To prove the second term of (151) is non-positive, it is sufficient to prove that the sum of b(v, r;α∗) and
b(r, v;α∗) is non-positive for any (v, r) ∈ ∆. Since α∗ ≤ 1

2 , we can see that only if v < r, we may have
b(v, r;α∗) > 0, which means that b(v, r;α∗) and b(r, v;α∗) cannot be positive simultaneously. So, there are
only two possible cases to consider. When both b(v, r;α∗) and b(r, v;α∗) are non-positive, the proof is trivial.
When either b(v, r;α∗) or b(r, v;α∗) is positive, without loss of generality, we assume that b(v, r;α∗) > 0 and
b(r, v;α∗) ≤ 0, then we have

b(v, r;α∗) + b(r, v;α∗) =2
v
α∗ 2

r
1−α∗

(
− v

(α∗)2
+

r

(1− α∗)2

)
+ 2

r
α∗ 2

v
1−α∗

(
− r

(α∗)2
+

v

(1− α∗)2

)
≤2

r
α∗ 2

v
1−α∗

(
− r + v

(α∗)2
+

r + v

(1− α∗)2

)
≤ 0, (153)

where the first inequality is due to the fact that v < r. The above result implies that the second term of (151) is
non-positive. Therefore, we conclude that ∂C(τ)

∂τ

∣∣
τ=1

< 0.

The result of ∂C(τ)
∂τ

∣∣
τ=1

< 0 implies that we are able to find a τ (τ > 1) such that C(τ) < C(1). Since C(1)
is the outage probability with the optimum allocation strategy (α∗, P ∗

1 , P
∗
2 ) and C(τ) is the outage probability

with another feasible allocations strategy (τα∗,
P ∗
1
τ ,

(1−α∗)P ∗
2

1−τα∗ ), the fact that C(τ) < C(1) for some τ > 1

contradicts the assumption that there exists an optimum solution (α∗, P ∗
1 , P

∗
2 ) with α∗ ≤ 1

2 . Therefore, we
prove Theorem 6 completely. �

Theorem 6 shows that the equal-time allocation strategy in most existing cooperative relaying protocol (allo-
cating equal time among the two phases) is not optimal in general.

3.2.4 Practical Cooperative Communication Protocol Design Based on Linear Mapping

It is difficult, sometimes may be infeasible, to implement the ideal cooperative protocol as the re-encoding
function M(·) and time allocation can be arbitrary. In this section, with more realistic consideration, we design
a cooperative communication protocol based on linear mapping, where the relay uses linear mapping as the
re-encoding function M(·). Also, the practical cooperative protocol allocates integer time slots in Phases
I and II. It is much easier to implement the linear mapping forwarding method with the time allocation of
integer time slots in both phases. The theoretical results from the ideal cooperative protocol in the previous
section will serve as guideline and benchmark for the proposed linear-mapping based cooperative protocol
design. Interestingly, the practical cooperative protocol based on optimum linear mapping performs closely to
the performance benchmark of the ideal cooperative protocol. In the following, we first specify the practical
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cooperative communication protocol design based on linear mapping. Then we optimize the linear mapping of
the protocol such that the outage probability of the proposed protocol is minimized.

We intend to design a practical cooperative relaying protocol with L time slots in Phase I and K time slots
in Phase II. We assume that each time slot has time duration Ts. In Phase I, the source broadcasts a block of
symbols xs (xs = (xs[1], . . . , xs[L])

T ) using L time slots, in which each element of xs has unit power. In Phase
II, if the relay successfully decodes the message, then the relay takes K time slots to forward a re-encoded
message xr (xr = (xr[1], . . . , xr[K])T ), where xr = Gxs and G is a K × L matrix representation of the linear
mapping. In the protocol, the total time duration of Phase I is T1 = LTs and the time duration of Phase II is
T2 = KTs, thus the time allocation ratio α of the protocol is

α =
LTs

LTs +KTs
=

L

L+K
. (154)

Based on the theoretical results in the previous section, we know that we should allocate more time to Phase I
than that to Phase II in order to minimize the outage probability (i.e., 1

2 < α < 1), which means that we should
choose K < L in the practical cooperative protocol design.

The general system model in Section 3.2.1 can be modified for the linear-mapping based cooperative protocol
in a discrete version as follows:

ys,d =
√

P1 Hs,d xs + ns,d, (155)

ys,r =
√

P1 Hs,r xs + ns,r, (156)

yr,d =

√
P̃2 Hr,d xr + nr,d, (157)

where Hs,d = hs,dIL, Hs,r = hs,rIL, Hr,d = hr,dIK , ys,d and ys,r are the signal vectors of size L× 1 received
at the destination and the relay respectively during Phase I, yr,d is the signal vector of size K × 1 received at
the destination during Phase II, ns,d and ns,r are the noise vectors of size L× 1 at the destination and the relay
respectively in Phase I, and nr,d is the noise vector of size K × 1 at the destination in Phase II. In (155)−(157),
the elements of the noise vectors ns,d, ns,r and nr,d are independent Gaussian random variables with mean zero
and variance N0. The channel coefficients hs,d, hs,r and hr,d are modeled as zero-mean complex Gaussian
random variables with variances δ2s,d, δ2s,r and δ2r,d, respectively.

At the destination, it combines the received signals ys,d and yr,d from both phases to jointly detect the original
message xs. The combined signal at the destination can be expressed as

yd
△
=

(
ys,d
yr,d

)
=

( √
P1Hs,dxs√
P̃2Hr,dxr

)
+

(
ns,d

nr,d

)
. (158)

Since xr = Gxs, the combined signal yd can be further simplified as

yd = Hd xs + nd, (159)

where Hd
△
=

( √
P1Hs,d√
P̃2Hr,dG

)
, nd

△
=

(
ns,d

nr,d

)
and nd ∼ CN (0,N0IL+K).

3.2.5 Optimum Linear Mapping Design

In this subsection, we optimize the linear mapping matrix G of size K × L (K < L) such that the outage
probability of the proposed linear-mapping based cooperative protocol is minimized.

First, we derive the outage probability of the linear-mapping based cooperative protocol. From (155), we
observe that the channel from the source to the destination in Phase I is a multi-input multi-output complex
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Gaussian channel. Thus, with i.i.d. circular symmetric complex Gaussian inputs, the maximum mutual infor-
mation between the source and the destination in Phase I is

Is,d =
1

L+K
log2

[
det

(
IL +

P1

N0
Hs,dHH

s,d

)]
=

L

L+K
log2

(
1 +

P1

N0
|hs,d|2

)
, (160)

where the factor 1
L+K in the first equality is due to the fact that the cooperative protocol uses L+K time slots

in Phase I. Similarly, the maximum mutual information between the source and the relay in Phase I is given by

Is,r =
L

L+K
log2

(
1 +

P1

N0
|hs,r|2

)
. (161)

In Phase II, if the relay decodes the message from the source correctly (i.e., P̃2 = P2), the destination can
utilize the combined signal yd from two phases to detect the original message xs. From (159), we can see that
the channel between the output yd and the input xs is an equivalent multi-input, multi-output complex Gaussian
channel. Therefore, the maximum mutual information of the joint detection in Phase II is

Id =
1

L+K
log2

[
det

(
IL+K +

HdHH
d

N0

)]
=

1

L+K
log2

{
det

[(
1 +

P1|hs,d|2

N0

)
IL +

P2|hr,d|2

N0
GHG

]}
, (162)

where the second equality is due to the fact that det
(
IL+K +

HdHH
d

N0

)
= det

(
IL +

HH
d Hd

N0

)
and HH

d Hd =
P1|hs,d|2

N0
IL +

P2|hr,d|2
N0

GHG. Thus, for any given target transmission rate RT , the outage probability of the
proposed linear-mapping based cooperative protocol is

Pout = Pr [Is,d < RT ]Pr [Is,r < RT ] + (1− Pr [Is,r < RT ])Pr [Id < RT ] , (163)

in which Is,d, Is,r and Id are specified in (160), (161) and (162), respectively.
Next, we try to optimize the linear mapping G in order to minimize the outage probability in (163). We note

that in (163), only the term Id depends on the linear mapping G. Thus, to minimize the outage probability Pout,
it is equivalent to minimize Pr [Id < RT ] under the power constraint Tr

(
GGH) ≤ K. The power constraint

ensures that the forwarded signals have unit average power. The mutual information Id in (162) can be further
calculated as

Id =
1

L+K
log2

[(
1 +

P1|hs,d|2

N0

)L

det

(
IK +

P2|hr,d|2/N0

1 + P1|hs,d|2/N0
GGH

)]
△
=

1

L+K
(Id,1 + Id,2) , (164)

where Id,1
△
= log2

(
1 +

P1|hs,d|2
N0

)L
and Id,2

△
= log2

[
det
(

IK +
P2|hr,d|2/N0

1+P1|hs,d|2/N0
GGH

)]
. We observe that Id,1

does not depend on the linear mapping G. Thus, to maximize Id, it is equivalent to maximize Id,2 under the
power constraint that Tr

(
GGH) ≤ K. To further calculate Id,2, we consider eigen-decomposition GGH =

UHΛU, where U is a unitary matrix, Λ = diag(λ1, . . . , λK) and the eigenvalues λ1, . . . , λK are non-negative.
Thus, we have

Id,2 = log2

[
det

(
IK +

P2|hr,d|2/N0

1 + P1|hs,d|2/N0
UHΛU

)]
=

K∑
i=1

log2

(
1 +

P2|hr,d|2/N0

1 + P1|hs,d|2/N0
λi

)
. (165)
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Figure 15: Outage probability of the ideal cooperative protocol with different time allocation ratio α ∈ (0, 1)

under the channel condition {δ2s,r, δ2r,d} = {1, 1}. Assume that P1 = P ∗
1 (α) and P2 = P ∗

2 (α) for any given
α ∈ (0, 1) based on Theorem 5, and P/N0 = 30dB.

Since
∑K

i=1 λi = Tr
(
GGH) ≤ K, the problem of optimizing the linear mapping G is specified as

max
λ1,...,λK

K∑
i=1

log2

(
1 +

P2|hr,d|2/N0

1 + P1|hs,d|2/N0
λi

)
(166)

s.t.
K∑
i=1

λi ≤ K.

We can solve the problem by using Lagrange multipliers. Consider an Lagrange multiplier µ and an Lagrange
function

L(λ1, . . . , λK) =

K∑
i=1

log2

(
1 +

P2|hr,d|2/N0

1 + P1|hs,d|2/N0
λi

)
+ µ

(
K∑
i=1

λi

)
. (167)

Differentiating the Lagrange function with respect to λi, we have

∂L(λ1, . . . , λK)

∂λi
=

1

λi +
1+P1|hs,d|2/N0

P2|hr,d|2/N0

+ µ. (168)

Let ∂L(λ1,...,λK)
∂λi

= 0, we obtain an expression of optimum λi as

λi = max(0,− 1

µ
−

1 + P1|hs,d|2/N0

P2|hr,d|2/N0
). (169)

Since
∑K

i=1 λi = K, we have

µ = −
P2|hr,d|2/N0

1 + P1|hs,d|2/N0 + P2|hr,d|2/N0
. (170)
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Figure 16: Outage probability of the ideal cooperative protocol with different time allocation ratio α ∈ (0, 1)

under the channel condition {δ2s,r, δ2r,d} = {10, 1}. Assume that P1 = P ∗
1 (α) and P2 = P ∗

2 (α) for any given
α ∈ (0, 1) based on Theorem 5, and P/N0 = 30dB.

By substituting (170) into (169), we have

λi =
1 + P1|hs,d|2/N0 + P2|hr,d|2/N0

P2|hr,d|2/N0
−

1 + P1|hs,d|2/N0

P2|hr,d|2/N0
= 1, (171)

i.e., the optimum solution for the problem (166) is λi = 1 for i = 1, . . . ,K. Therefore, the linear mapping G
minimizes the outage probability in (163) if and only if GGH = IK . We summarize the above discussion in
the following theorem.

Theorem 7 In the linear-mapping based cooperative protocol, any K × L (K < L) linear mapping G with
power constraint Tr

(
GGH) ≤ K minimizes the outage probability of the protocol if and only if it satisfies

GGH = IK . Consequently, we may select any K rows of an L × L unitary matrix to form the optimum linear
mapping G.

3.2.6 Numerical and Simulation Results

In this section, we provide some numerical studies and simulation results to illustrate the performance bench-
mark of the ideal cooperative protocol and the performance of the practical cooperative protocol based on the
optimum linear mapping. In all numerical studies and simulations, we assume that the target transmission
rate is RT = 2 bits/s/Hz, the noise variance is N0 = 1, and the variance of the source-destination chan-
nel is normalized as δ2s,d = 1. We consider three exemplary scenarios with various channel variances: (i)
{δ2s,r, δ2r,d} = {1, 1}; (ii) {δ2s,r, δ2r,d} = {10, 1}; and (iii) {δ2s,r, δ2r,d} = {1, 10}.

In Figs. 15–17, we plot the outage probability of the ideal cooperative protocol in terms of different time
allocation ratio α ∈ (0, 1) for the three channel conditions (i)-(iii), respectively. In the study, we assume
P/N0 = 30dB. For any given time allocation ratio α ∈ (0, 1), the corresponding optimum power allocation
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Figure 17: Outage probability of the ideal cooperative protocol with different time allocation ratio α ∈ (0, 1)

under the channel condition {δ2s,r, δ2r,d} = {1, 10}. Assume that P1 = P ∗
1 (α) and P2 = P ∗

2 (α) for any given
α ∈ (0, 1) based on Theorem 5, and P/N0 = 30dB.

P1 = P ∗
1 (α) and P2 = P ∗

2 (α) are calculated based on Theorem 5. In each figure, we plot the outage probability
approximation based on (133) as well as the exact outage probability calculated based on (121) for comparison.
In the case of δ2s,r = 1 and δ2r,d = 1, Fig. 15 shows that the optimum time allocation ratio is α∗ = 0.66. The
corresponding optimum power allocation is P ∗

1 (α
∗) = 1.0971P and P ∗

2 (α
∗) = 0.8115P based on Theorem

5, in which the energy allocation ratio β = 0.7192. In case of δ2s,r = 10 and δ2r,d = 1, Fig. 16 shows that
the optimum time allocation ratio is α∗ = 0.59. The corresponding optimum power allocation is P ∗

1 (α
∗) =

1.0196P and P ∗
2 (α

∗) = 0.9718P based on Theorem 5 and the energy allocation ratio β = 0.5969. In case of
δ2s,r = 1 and δ2r,d = 10, Fig. 17 shows that the optimum time allocation ratio is α∗ = 0.74. The corresponding
optimum power allocation is P ∗

1 (α
∗) = 1.1112P and P ∗

2 (α
∗) = 0.6835P and the energy allocation ratio

β = 0.8122. Figs. 15 - 17 show that for all three channel conditions, the optimum time allocation ratio α∗ is
strictly larger than 1

2 which is consistent to the theoretical development in Theorem 6, and the corresponding
energy allocation ratio β is strictly larger than 1

2 which is consistent to the result in Theorem 5. Moreover, we
observe that the larger the ratio of the relay-destination link quality over the source-relay link quality (δ2r,d/δ

2
s,r)

is, the larger the optimum time allocation ratio α∗ and the corresponding energy allocation ratio β are. In the
three figures, we can see that the approximation of the outage probability based on (133) matches the exact
value of the outage probability based on (121) very well.

Figs. 18–20 show the outage probability performance of the proposed practical cooperative relaying proto-
col based on the optimum linear mapping for three channel conditions (i)-(iii), respectively. For comparison,
the figures also show the performance of the direct transmissions, the performance of the cooperative protocol
based on equal time allocation, and the performance benchmark from the ideal cooperative protocol. Table 4
specifies time and power parameters (α, P1, P2) for each cooperative protocol under the three channel condi-
tions, respectively. When δ2s,r = 1 and δ2r,d = 1, Fig. 18 shows that the proposed practical cooperative protocol
outperforms the equal-time based cooperative protocol with performance improvement about 1.5dB, and the
difference between the performances of the practical linear-mapping based cooperative protocol and the ideal

46
Approved for Public Release; Distribution Unlimited.



0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

P/N
0
,dB

O
ut

ag
e 

P
ro

ba
bi

lit
y

Direct Transmissions
Equal−time Coop. Protocol
Proposed Coop. Protocol
Benchmark (Ideal Coop.)

Figure 18: Performance of the proposed practical cooperative protocol with the optimum linear mapping under
the channel condition {δ2s,r, δ2r,d} = {1, 1}.
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Figure 19: Performance of the proposed practical cooperative protocol with the optimum linear mapping under
the channel condition {δ2s,r, δ2r,d} = {10, 1}.
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Figure 20: Performance of the proposed practical cooperative protocol with the optimum linear mapping under
the channel condition {δ2s,r, δ2r,d} = {1, 10}.

benchmark is less than 1dB. When δ2s,r = 10 and δ2r,d = 1, we can see in Fig. 19 that there is a 2dB difference
between the proposed practical cooperative protocol and the ideal performance benchmark, but compared to
the equal-time based cooperative protocol, the performance difference is less than 1dB. In this case, the perfor-
mance gain over the equal-time based cooperative protocol is narrowed because the equal-time allocation ratio
is close to the optimum time ratio which is α∗ = 0.59 in this case. When δ2s,r = 1 and δ2r,d = 10, Fig. 20 shows
that the performance of the proposed practical cooperative protocol has over 2.5dB improvement compared to
the equal-time based cooperative protocol. In this case, the performance of the proposed linear-mapping based
cooperative protocol is very close to the ideal performance benchmark (less than 0.25dB). From the figures,
we can see that the equal-time based cooperative protocol is not optimum in general, and the proposed practi-
cal cooperative protocol with the optimum linear mapping has performance gain in all three different channel
conditions, which varies according to channel conditions. Moreover, we observe that when the ratio of the
relay-destination link quality over the source-relay link quality (δ2r,d/δ

2
s,r) becomes larger, the gap between

the performance of the proposed practical linear-mapping based cooperative protocol and the ideal benchmark
becomes smaller.

Table 4: TIME AND POWER PARAMETERS FOR DIFFERENT CHANNEL CONDITIONS
Resource Allocation (α, P1, P2)

{δ2s,r, δ2r,d} Ideal Coop. Proposed Coop. Equal-time Coop.

{1, 1} (0.66, 1.0971P, 0.8115P ) (23 , 1.0788P, 0.8423P ) (12 , 1.6328P, 0.3672P )

{10, 1} (0.59, 1.0196P, 0.9718P ) (35 , 0.9948P, 1.0079P ) (12 , 1.2946P, 0.7054P )

{1, 10} (0.74, 1.1112P, 0.6835P ) (34 , 1.0829P, 0.7513P ) (12 , 1.8560P, 0.1440P )
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4 Results and Discussions

In this project, we attacked the fundamental problem of assigning optimal transmission power sequence for
cooperative H-ARQ relaying protocol over quasi-static Rayleigh fading channels. Finally, we are able to de-
termine an optimal transmission power assignment strategy for the cooperative H-ARQ relaying protocol over
quasi-static Rayleigh fading channels to minimize the average total power consumption. We investigated for
the first time the average total transmission power consumed by the cooperative H-ARQ protocol. Specifically,
we developed an analytical approach to obtain a closed-form expression of the average total transmission power
which is valid for any maximum number of (re)transmission rounds L allowed in the protocol. However, the
closed-form expression of the average total transmission power is complicated in general, so we developed
a simple approximation of the average total transmission power which is tight at high SNR. Then, based on
the asymptotically tight approximation, we determined the optimal power sequence that minimizes the aver-
age total power consumption of the protocol for any given targeted outage probability. We derived a set of
equations that describe the optimal power level in each (re)transmission and enable its recursive calculation
with fixed searching complexity. The optimal power assignment solution reveals that conventional equal power
assignment scheme is far from optimal. Numerical and simulation results illustrate and validate our theoretical
development. Specifically, in the first set of numerical studies, we compared the average total transmission
power of the cooperative H-ARQ relaying protocol by comparing the approximation result in (75), the exact
closed-form result in (26) and the simulation result for the cases of L = 2, 3 and 4, respectively. By compar-
isons, we observed that the closed-form result of the average total transmission power matches exactly with
the simulation curve in each study. We also observed that the approximation of the average total transmission
power is loose at low SNR and tight at high SNR. The approximation curve is almost indistinguishable from
the exact closed-form result and the simulation curve for SNR above 15 dB in each study. In the second set of
numerical studies, we compared the optimal transmission power sequence from the Theorem and the exhaus-
tive search result based on the original optimization problem in (82) (without approximation). We observed
that the optimal transmission power values resulted from the Theorem match well with the exhaustive search
result from the original optimization problem. An interesting observation is that the optimal power assignment
strategy assigns less transmission power to the source in the first few (re)transmission rounds and significantly
large transmission power to the source at the last (L-th) round compared to the equal power assignment strategy.
It provides some insightful information on how much power should be assigned to the source at each round for
saving the average total power cost. In the third set of numerical studies, we compared the average total trans-
mission power for both the optimal power assignment scheme and the equal power assignment scheme, with
different targeted SNR γ0 (from 0 dB to 25 dB). The required outage performance is set at p0 = 10−3. When
L = 2, we observed that the optimal power assignment saves about 1.5 dB in average total transmission power
compared to the equal power assignment. When L = 3 and 4, we observed that the optimal power assignment
scheme outperforms the equal power assignment scheme with a performance improvement of about 2.6 dB.
Moreover, it is interesting to observe that the performance gain of the optimal power assignment scheme is
almost constant for different targeted SNR γ0 (from 0 dB to 25 dB). In the fourth set of numerical studies, we
compared the average total transmission power required in the two power assignment strategies with different
targeted outage probability values for the cases of L = 2, 3 and 4, respectively. From the comparisons, we
observed that for an outage performance of p0 = 10−5, the power savings of the optimal power assignment
compared to the equal power assignment are 5 dB when L = 2, 10 dB when L = 3, and 11 dB when L = 4. We
also observed that the lower the required outage probability, the more performance gain of the optimal power
assignment strategy compared to the equal power assignment strategy.

While most existing works on cooperative relaying protocol designs considered equal-time allocation sce-
nario, i.e. equal time duration is assigned to each source and each relay, in this project we are able to design and
optimize cooperative communication protocols by exploring all possible variations in time and power domains.
First, we analyzed and optimized the ideal cooperative communication protocol where the system can use arbi-
trary re-encoding function at the relay and adjust time allocation arbitrarily between Phases I and II. Based on
the asymptotically tight approximation of the outage probability, we obtained the optimum strategy of power
and time allocations to minimize the outage probability of the ideal cooperative protocol. For any given time
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allocation α ∈ (0, 1), we determined the corresponding optimum power allocation at the source and the relay
analytically with a closed-form expression. We also showed theoretically that in order to minimize the outage
probability of the protocol, one should always allocate more energy and time to Phase I than that to Phase II in
the protocol. We note that in the ideal cooperative protocol in which there is no constraint on the re-encoding
methods and time allocation, it may not be easy/feasible to implement it in practical systems. Therefore, with
more realistic consideration, we proposed a practical cooperative relaying protocol design based on linear map-
ping, where the protocol considers linear mapping forwarding method at the relay and uses integer time slots
in Phases I and II. The theoretical results from the ideal cooperative protocol served as guideline and bench-
mark in the practical cooperative protocol design. We also developed an optimum linear mapping to minimize
the outage probability of the linear-mapping based cooperative protocol. Extensive numerical and simulation
results show that the practical cooperative relaying protocol based on the optimum linear mapping outperforms
the existing cooperative protocol with equal time allocation, and more interestingly, the performance of the
practical linear-mapping based cooperative relaying protocol is close to the performance benchmark of the
ideal cooperative protocol. More specifically, in numerical studies and simulations, we consider three exem-
plary scenarios with various channel variances: (i) {δ2s,r, δ2r,d} = {1, 1}; (ii) {δ2s,r, δ2r,d} = {10, 1}; and (iii)
{δ2s,r, δ2r,d} = {1, 10}. The variance of the source-destination channel is normalized as δ2s,d = 1. In one set of
numerical studies, we compared the outage probability of the ideal cooperative protocol in terms of different
time allocation ratio α ∈ (0, 1) for the three channel conditions (i)-(iii), respectively. In the study, we compared
the outage probability approximation based on (133) as well as the exact outage probability calculated based on
(121). In the case of δ2s,r = 1 and δ2r,d = 1, it shows that the optimum time allocation ratio is α∗ = 0.66. The
corresponding optimum power allocation is P ∗

1 (α
∗) = 1.0971P and P ∗

2 (α
∗) = 0.8115P based on Theorem 5,

in which the energy allocation ratio β = 0.7192. In case of δ2s,r = 10 and δ2r,d = 1, it shows that the optimum
time allocation ratio is α∗ = 0.59. The corresponding optimum power allocation is P ∗

1 (α
∗) = 1.0196P and

P ∗
2 (α

∗) = 0.9718P based on Theorem 5 and the energy allocation ratio β = 0.5969. In case of δ2s,r = 1 and
δ2r,d = 10, it shows that the optimum time allocation ratio is α∗ = 0.74. The corresponding optimum power
allocation is P ∗

1 (α
∗) = 1.1112P and P ∗

2 (α
∗) = 0.6835P and the energy allocation ratio β = 0.8122. We ob-

served that for all three channel conditions, the optimum time allocation ratio α∗ is strictly larger than 1
2 which

is consistent to the theoretical development in Theorem 6, and the corresponding energy allocation ratio β is
strictly larger than 1

2 which is consistent to the result in Theorem 5. Moreover, we observed that the larger the
ratio of the relay-destination link quality over the source-relay link quality (δ2r,d/δ

2
s,r) is, the larger the optimum

time allocation ratio α∗ and the corresponding energy allocation ratio β are. In another set of numerical studies,
we observed the outage probability performance of the proposed practical cooperative relaying protocol based
on the optimum linear mapping for three channel conditions (i)-(iii), respectively. For comparison, we also
simulated the performance of the direct transmissions, the performance of the cooperative protocol based on
equal time allocation, and the performance benchmark from the ideal cooperative protocol. In comparisons, we
observed that when δ2s,r = 1 and δ2r,d = 1, the proposed practical cooperative protocol outperforms the equal-
time based cooperative protocol with performance improvement about 1.5dB, and the difference between the
performances of the practical linear-mapping based cooperative protocol and the ideal benchmark is less than
1dB. When δ2s,r = 10 and δ2r,d = 1, we observed that there is a 2dB difference between the proposed practical
cooperative protocol and the ideal performance benchmark, but compared to the equal-time based cooperative
protocol, the performance difference is less than 1dB. In this case, the performance gain over the equal-time
based cooperative protocol is narrowed because the equal-time allocation ratio is close to the optimum time
ratio which is α∗ = 0.59 in this case. When δ2s,r = 1 and δ2r,d = 10, we observed that the performance of the
proposed practical cooperative protocol has over 2.5dB improvement compared to the equal-time based coop-
erative protocol. In this case, the performance of the proposed linear-mapping based cooperative protocol is
very close to the ideal performance benchmark (less than 0.25dB). From the comparisons, we can conclude that
the equal-time based cooperative protocol is not optimum in general, and the proposed practical cooperative
protocol with the optimum linear mapping has performance gain in all three different channel conditions, which
varies according to channel conditions.
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5 Conclusions

In this report, we summarized our findings resulting from the project and described in details the system models
and the proposed methods and procedures. First, we determined an optimal transmission power assignment
strategy for the cooperative H-ARQ relaying protocol over quasi-static Rayleigh fading channels to minimize
the average total power consumption. We investigated for the first time the average total transmission power
consumed by the cooperative H-ARQ protocol. Specifically, we developed an analytical approach to obtain
a closed-form expression of the average total transmission power which is valid for any maximum number of
(re)transmission rounds L allowed in the protocol. However, the closed-form expression of the average total
transmission power is complicated in general, so we developed a simple approximation of the average total
transmission power which is tight at high SNR. Then, based on the asymptotically tight approximation, we
determined the optimal power sequence that minimizes the average total power consumption of the protocol
for any given targeted outage probability. We derived a set of equations that describe the optimal power level
in each (re)transmission and enable its recursive calculation with fixed searching complexity. The optimal
power assignment solution reveals that conventional equal power assignment scheme is far from optimal. For
example, for a targeted outage performance of p0 = 10−3 and maximum number of (re)transmissions L = 4,
the optimal power assignment scheme saves about 2.6 dB in the average total power consumption compared to
the equal power assignment scheme. We also observe that the lower the required outage probability, the more
performance gain of the optimal power assignment scheme comparing to the equal power scheme.

Furthermore, we designed and optimized cooperative relaying protocols by exploring possible variations in
time and power domains. First, we analyzed and optimized the ideal cooperative communication protocol
where the system can use arbitrary re-encoding function M(·) at the relay and adjust time allocation arbitrarily
between Phases I and II. Based on the asymptotically tight approximation of the outage probability, we obtained
the optimum strategy of power and time allocations to minimize the outage probability of the ideal cooperative
protocol. For any given time allocation α ∈ (0, 1), we determined the corresponding optimum power allocation
at the source and the relay analytically with a closed-form expression. We also showed theoretically that in
order to minimize the outage probability of the protocol, one should always allocate more energy and time to
Phase I than that to Phase II in the protocol. We note that in the ideal cooperative protocol in which there is
no constraint on the re-encoding methods and time allocation, it may not be easy/feasible to implement it in
practical systems. Therefore, with more realistic consideration, we proposed a practical cooperative relaying
protocol design based on linear mapping, where the protocol considers linear mapping forwarding method at the
relay and uses integer time slots in Phases I and II. The theoretical results from the ideal cooperative protocol
served as guideline and benchmark in the practical cooperative protocol design. We also developed an optimum
linear mapping to minimize the outage probability of the linear-mapping based cooperative protocol. Simulation
results show that the practical cooperative relaying protocol based on the optimum linear mapping outperforms
the existing cooperative protocol with equal time allocation, and more interestingly, the performance of the
practical linear-mapping based cooperative relaying protocol is close to the performance benchmark of the ideal
cooperative protocol. We observed that when the ratio of the relay-destination link quality over the source-relay
link quality (δ2r,d/δ

2
s,r) becomes larger, the gap between the performance of the proposed linear-mapping based

cooperative protocol and the ideal benchmark becomes smaller.
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ACRONYMS

ACK ACKnowledgement

AF Amplify-and-Forward

ARQ Automatic-Repeat-reQuest

AWGN Additive White Gaussian Noise

CDF Cumulative Distribution Function

CSI Channel State Information

DF Decode-and-Forward

H-ARQ Hybrid Automatic-Repeat-reQuest

LTE Long Term Evolution (LTE)-Advanced standard

MIMO Multiple-Input-Multiple-Output

MRC Maximal-Ratio-Combining

NACK Negative-ACKnowledgement

QoS Quality-of-Service

SER symbol error rate

SNR Signal-to-Noise Ratio
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